1
|
Thilakarathne AS, Liu F, Zou Z. Plant Signaling Hormones and Transcription Factors: Key Regulators of Plant Responses to Growth, Development, and Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1070. [PMID: 40219138 PMCID: PMC11990802 DOI: 10.3390/plants14071070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Plants constantly encounter a wide range of biotic and abiotic stresses that adversely affect their growth, development, and productivity. Phytohormones such as abscisic acid, jasmonic acid, salicylic acid, and ethylene serve as crucial regulators, integrating internal and external signals to mediate stress responses while also coordinating key developmental processes, including seed germination, root and shoot growth, flowering, and senescence. Transcription factors (TFs) such as WRKY, NAC, MYB, and AP2/ERF play complementary roles by orchestrating complex transcriptional reprogramming, modulating stress-responsive genes, and facilitating physiological adaptations. Recent advances have deepened our understanding of hormonal networks and transcription factor families, revealing their intricate crosstalk in shaping plant resilience and development. Additionally, the synthesis, transport, and signaling of these molecules, along with their interactions with stress-responsive pathways, have emerged as critical areas of study. The integration of cutting-edge biotechnological tools, such as CRISPR-mediated gene editing and omics approaches, provides new opportunities to fine-tune these regulatory networks for enhanced crop resilience. By leveraging insights into transcriptional regulation and hormone signaling, these advancements provide a foundation for developing stress-tolerant, high-yielding crop varieties tailored to the challenges of climate change.
Collapse
Affiliation(s)
| | - Fei Liu
- School of Life Sciences, Henan University, Kaifeng 475001, China;
| | - Zhongwei Zou
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
| |
Collapse
|
2
|
Ahmed S, Rashid MAR, Zafar SA, Azhar MT, Waqas M, Uzair M, Rana IA, Azeem F, Chung G, Ali Z, Atif RM. Genome-wide investigation and expression analysis of APETALA-2 transcription factor subfamily reveals its evolution, expansion and regulatory role in abiotic stress responses in Indica Rice (Oryza sativa L. ssp. indica). Genomics 2020; 113:1029-1043. [PMID: 33157261 DOI: 10.1016/j.ygeno.2020.10.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
Rice is an important cereal crop that serves as staple food for more than half of the world population. Abiotic stresses resulting from changing climatic conditions are continuously threating its yield and production. Genes in APETALA-2 (AP2) family encode transcriptional regulators implicated during regulation of developmental processes and abiotic stress responses but their identification and characterization in indica rice was still missing. In this context, twenty-six genes distributed among eleven chromosomes in Indica rice encoding AP2 transcription-factor subfamily were identified and their diverse haplotypes were studied. Phylogenetic analysis of OsAP2 TF family-members grouped them into three clades indicating conservation of clades among cereals. Segmental duplications were observed to be principal route of evolution, supporting the higher positive selection-pressure, which were estimated to be originated about 10.57 to 56.72 million years ago (MYA). Conserved domain analysis and intron-exon distribution pattern of identified OsAP2s revealed their exclusive distribution among the specific clades of the phylogenetic tree. Moreover, the members of osa-miR172 family were also identified potentially targeting four OsAP2 genes. The real-time quantitative expression profiling of OsAP2s under heat stress conditions in contrasting indica rice genotypes revealed the differential expression pattern of OsAP2s (6 genes up-regulated and 4 genes down-regulated) in stress- and genotype-dependent manner. These findings unveiled the evolutionary pathways of AP2-TF in rice, and can help the functional characterization under developmental and stress responses.
Collapse
Affiliation(s)
- Sohaib Ahmed
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Abdul Rehman Rashid
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center of Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650500, China; Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan.
| | - Syed Adeel Zafar
- National key facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Agriculture Sciences, Zhengzhou University, Zhengzhou 450000, China.
| | - Muhammad Waqas
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Uzair
- National key facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Iqrar Ahmad Rana
- Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Republic of Korea.
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan.
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad, Faisalabad-38040 Pakistan.
| |
Collapse
|
3
|
Feng K, Hou XL, Xing GM, Liu JX, Duan AQ, Xu ZS, Li MY, Zhuang J, Xiong AS. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol 2020; 40:750-776. [PMID: 32522044 DOI: 10.1080/07388551.2020.1768509] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the whole life process, many factors including external and internal factors affect plant growth and development. The morphogenesis, growth, and development of plants are controlled by genetic elements and are influenced by environmental stress. Transcription factors contain one or more specific DNA-binding domains, which are essential in the whole life cycle of higher plants. The AP2/ERF (APETALA2/ethylene-responsive element binding factors) transcription factors are a large group of factors that are mainly found in plants. The transcription factors of this family serve as important regulators in many biological and physiological processes, such as plant morphogenesis, responsive mechanisms to various stresses, hormone signal transduction, and metabolite regulation. In this review, we summarized the advances in identification, classification, function, regulatory mechanisms, and the evolution of AP2/ERF transcription factors in plants. AP2/ERF family factors are mainly classified into four major subfamilies: DREB (Dehydration Responsive Element-Binding), ERF (Ethylene-Responsive-Element-Binding protein), AP2 (APETALA2) and RAV (Related to ABI3/VP), and Soloists (few unclassified factors). The review summarized the reports about multiple regulatory functions of AP2/ERF transcription factors in plants. In addition to growth regulation and stress responses, the regulatory functions of AP2/ERF in plant metabolite biosynthesis have been described. We also discussed the roles of AP2/ERF transcription factors in different phytohormone-mediated signaling pathways in plants. Genomic-wide analysis indicated that AP2/ERF transcription factors were highly conserved during plant evolution. Some public databases containing the information of AP2/ERF have been introduced. The studies of AP2/ERF factors will provide important bases for plant regulatory mechanisms and molecular breeding.
Collapse
Affiliation(s)
- Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xi-Lin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Guo-Ming Xing
- Collaborative Innovation Center for Improving Quality and Increased Profits of Protected Vegetables in Shanxi, Taigu, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Tripathi S, Srivastava Y, Sangwan RS, Sangwan NS. In silico mining and functional analysis of AP2/ERF gene in Withania somnifera. Sci Rep 2020; 10:4877. [PMID: 32184405 PMCID: PMC7078187 DOI: 10.1038/s41598-020-60090-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/28/2019] [Indexed: 12/03/2022] Open
Abstract
Withania somnifera owing to its strong and remarkable stress tolerance property is a reliable candidate for the determination of genes involved in mechanism of adaption/tolerance of various stress conditions. 187 AP2/ERF gene related transcripts (GRTs) were identified during comprehensive search in W. somnifera transcriptome repertoire. Major hits in homology search were observed from the model plant Arabidopsis and members of Solanaceae family. Cloning, expression analysis of the gene and genetic transient transformation with the gene (WsAP2) were performed to predict its functional role in planta. Enhanced expression of some of the pathway genes for terpenoid biosynthesis was observed in transformed tissues in comparison to the control tissues. It is speculated that WsAP2 gene crucially regulates the expression of GGPPS gene in addition to the regulation of other important genes of terpenoid pathway via induction of expression of other genes such as HMGR, CAS, DXS and DXR. To the best of our knowledge, this is the first report representing detailed study of AP2/ERF gene family in W. somnifera. It is also suggested from the study that gene might have role in eliciting responses to combat stress and attribute the strong stress tolerant property associated with the plant.
Collapse
Affiliation(s)
- Sandhya Tripathi
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.,Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by Act of Parliament), CSIR-HRDC Campus, Kamla Nehru Nagar, Sector-19, Ghaziabad, 201002, UP, India
| | - Yashdeep Srivastava
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Rajender Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.,Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by Act of Parliament), CSIR-HRDC Campus, Kamla Nehru Nagar, Sector-19, Ghaziabad, 201002, UP, India
| | - Neelam Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India. .,Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by Act of Parliament), CSIR-HRDC Campus, Kamla Nehru Nagar, Sector-19, Ghaziabad, 201002, UP, India. .,Department of Biochemistry, School of Interdisciplinary and Applied Life Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana, 123031, India.
| |
Collapse
|
5
|
Trichoderma parareesei Favors the Tolerance of Rapeseed (Brassica napus L.) to Salinity and Drought Due to a Chorismate Mutase. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10010118] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Both drought and salinity represent the greatest plant abiotic stresses in crops. Increasing plant tolerance against these environmental conditions must be a key strategy in the development of future agriculture. The genus of Trichoderma filament fungi includes several species widely used as biocontrol agents for plant diseases but also some with the ability to increase plant tolerance against abiotic stresses. In this sense, using the species T. parareesei and T. harzianum, we have verified the differences between the two after their application in rapeseed (Brassica napus) root inoculation, with T. parareesei being a more efficient alternative to increase rapeseed productivity under drought or salinity conditions. In addition, we have determined the role that T. parareesei chorismate mutase plays in its ability to promote tolerance to salinity and drought in plants by increasing the expression of genes related to the hormonal pathways of abscisic acid (ABA) under drought stress, and ethylene (ET) under salt stress.
Collapse
|
6
|
Wang X, Song H, Sun M, Zhu Z, Xing G, Xu X, Gao M, Hou L, Li M. Digital gene expression analysis during floral transition in pak choi ( Brassica rapasubsp . chinensis). BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1307141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Xueting Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Hongxia Song
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Mengxia Sun
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Zhujun Zhu
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang A&F University, Hangzhou, P. R. China
| | - Guoming Xing
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Xiaoyong Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Meiying Gao
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Leiping Hou
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Meilan Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| |
Collapse
|
7
|
Li X, Zhang D, Gao B, Liang Y, Yang H, Wang Y, Wood AJ. Transcriptome-Wide Identification, Classification, and Characterization of AP2/ERF Family Genes in the Desert Moss Syntrichia caninervis. FRONTIERS IN PLANT SCIENCE 2017; 8:262. [PMID: 28289426 PMCID: PMC5326779 DOI: 10.3389/fpls.2017.00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/13/2017] [Indexed: 05/21/2023]
Abstract
APETALA2/Ethylene Responsive Factor (AP2/ERF) is a large family of plant transcription factors which play important roles in the control of plant metabolism and development as well as responses to various biotic and abiotic stresses. The desert moss Syntrichia caninervis, due to its robust and comprehensive stress tolerance, is a promising organism for the identification of stress-related genes. Using S. caninervis transcriptome data, 80 AP2/ERF unigenes were identified by HMM modeling and BLASTP searching. Based on the number of AP2 domains, multiple sequence alignment, motif analysis, and gene tree construction, ScAP2/ERF genes were classified into three main subfamilies (including 5 AP2 gene members, 72 ERF gene members, and 1 RAV member) and two Soloist members. We found that the ratio for each subfamily was constant between S. caninervis and the model moss Physcomitrella patens, however, as compared to the angiosperm Arabidopsis, the percentage of ERF subfamily members in both moss species were greatly expanded, while the members of the AP2 and RAV subfamilies were reduced accordingly. The amino acid composition of the AP2 domain of ScAP2/ERFs was conserved as compared with Arabidopsis. Interestingly, most of the identified DREB genes in S. caninervis belonged to the A-5 group which play important roles in stress responses and are rarely reported in the literature. Expression profile analysis of ScDREB genes showed different gene expression patterns under dehydration and rehydration; the majority of ScDREB genes demonstrated a stronger response to dehydration relative to rehydration indicating that ScDREB may play an important role in dehydrated moss tissues. To our knowledge, this is the first study to detail the identification and characterization of the AP2/ERF gene family in a desert moss. Further, this study will lay the foundation for further functional analysis of these genes, provide greater insight to the stress tolerance mechanisms in S. caninervis and provide a reference for AP2/ERF gene family classification in other moss species.
Collapse
Affiliation(s)
- Xiaoshuang Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
| | - Daoyuan Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
| | - Bei Gao
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, China
| | - Yuqing Liang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
- University of Chinese Academy of SciencesBeijing, China
| | - Honglan Yang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
| | - Yucheng Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
| | - Andrew J. Wood
- Department of Plant Biology, Southern Illinois University, CarbondaleIL, USA
| |
Collapse
|
8
|
Pandey B, Sharma P, Tyagi C, Goyal S, Grover A, Sharma I. Structural modeling and molecular simulation analysis of HvAP2/EREBP from barley. J Biomol Struct Dyn 2015. [DOI: 10.1080/07391102.2015.1073630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Li MY, Tan HW, Wang F, Jiang Q, Xu ZS, Tian C, Xiong AS. De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum). PLoS One 2014; 9:e108977. [PMID: 25268141 PMCID: PMC4182582 DOI: 10.1371/journal.pone.0108977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/27/2014] [Indexed: 01/14/2023] Open
Abstract
Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.
Collapse
Affiliation(s)
- Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hua-Wei Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qian Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Chang Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Qian G, Ping J, Zhang Z, Xu D. Sequencing and comparative genomics analysis in Senecio scandens Buch.-Ham. Ex D. Don, based on full-length cDNA library. BIOTECHNOL BIOTEC EQ 2014; 28:805-812. [PMID: 26740776 PMCID: PMC4684062 DOI: 10.1080/13102818.2014.956461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/10/2014] [Indexed: 11/23/2022] Open
Abstract
Senecio scandens Buch.-Ham. ex D. Don, an important antibacterial source of Chinese traditional medicine, has a widespread distribution in a few ecological habitats of China. We generated a full-length complementary DNA (cDNA) library from a sample of elite individuals with superior antibacterial properties, with satisfactory parameters such as library storage (4.30 × 106 CFU), efficiency of titre (1.30 × 106 CFU/mL), transformation efficiency (96.35%), full-length ratio (64.00%) and redundancy ratio (3.28%). The BLASTN search revealed the facile formation of counterparts between the experimental sample and Arabidopsis thaliana in view of high-homology cDNA sequence (90.79%) with e-values <1e - 50. Sequence similarities to known proteins indicate that the entire sequences of the full-length cDNA clones consist of the major of functional genes identified by a large set of microarray data from the present experimental material. For other Compositae species, a large set of full-length cDNA clones reported in the present article will serve as a useful resource to facilitate further research on the transferability of expressed sequence tag-derived simple sequence repeats (EST-SSR) development, comparative genomics and novel transcript profiles.
Collapse
Affiliation(s)
- Gang Qian
- Department of Cell Biology and Genetics, Zunyi Medical College, Zunyi, Guizhou, P.R. China
| | - Junjiao Ping
- Department of Cell Biology and Genetics, Zunyi Medical College, Zunyi, Guizhou, P.R. China
| | - Zhen Zhang
- Department of Cell Biology and Genetics, Zunyi Medical College, Zunyi, Guizhou, P.R. China
| | - Delin Xu
- Department of Cell Biology and Genetics, Zunyi Medical College, Zunyi, Guizhou, P.R. China
| |
Collapse
|
11
|
Qian G, Ping J, Lu J, Zhang Z, Wang L, Xu D. Construction of Full-Length cDNA Library and Development of EST-Derived Simple Sequence Repeat (EST-SSR) Markers in Senecio scandens. Biochem Genet 2014; 52:494-508. [DOI: 10.1007/s10528-014-9662-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 06/10/2014] [Indexed: 11/28/2022]
|
12
|
Liu Z, Kong L, Zhang M, Lv Y, Liu Y, Zou M, Lu G, Cao J, Yu X. Genome-wide identification, phylogeny, evolution and expression patterns of AP2/ERF genes and cytokinin response factors in Brassica rapa ssp. pekinensis. PLoS One 2013; 8:e83444. [PMID: 24386201 PMCID: PMC3875448 DOI: 10.1371/journal.pone.0083444] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 11/05/2013] [Indexed: 11/18/2022] Open
Abstract
The AP2/ERF transcription factor family is one of the largest families involved in growth and development, hormone responses, and biotic or abiotic stress responses in plants. In this study, 281 AP2/ERF transcription factor unigenes were identified in Chinese cabbage. These superfamily members were classified into three families (AP2, ERF, and RAV). The ERF family was subdivided into the DREB subfamily and the ERF subfamily with 13 groups (I- XI) based on sequence similarity. Duplication, evolution and divergence of the AP2/ERF genes in B. rapa and Arabidopsis thaliana were investigated and estimated. Cytokinin response factors (CRFs), as a subclade of the AP2/ERF family, are important transcription factors that define a branch point in the cytokinin two-component signal (TCS) transduction pathway. Up to 21 CRFs with a conserved CRF domain were retrieved and designated as BrCRFs. The amino acid sequences, conserved regions and motifs, phylogenetic relationships, and promoter regions of the 21 BrCRFs were analyzed in detail. The BrCRFs broadly expressed in various tissues and organs. The transcripts of BrCRFs were regulated by factors such as drought, high salinity, and exogenous 6-BA, NAA, and ABA, suggesting their involvement in abiotic stress conditions and regulatory mechanisms of plant hormone homeostasis. These results provide new insight into the divergence, variation, and evolution of AP2/ERF genes at the genome-level in Chinese cabbage.
Collapse
Affiliation(s)
- Zhenning Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, People’s Republic of China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou, People’s Republic of China
| | - Lijun Kong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, People’s Republic of China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou, People’s Republic of China
| | - Mei Zhang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, People’s Republic of China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou, People’s Republic of China
| | - Yanxia Lv
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, People’s Republic of China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou, People’s Republic of China
| | - Yapei Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, People’s Republic of China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou, People’s Republic of China
| | - Minghau Zou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, People’s Republic of China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou, People’s Republic of China
| | - Gang Lu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, People’s Republic of China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou, People’s Republic of China
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, People’s Republic of China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou, People’s Republic of China
| | - Xiaolin Yu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, People’s Republic of China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
13
|
Song X, Li Y, Hou X. Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics 2013; 14:573. [PMID: 23972083 PMCID: PMC3765354 DOI: 10.1186/1471-2164-14-573] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 08/22/2013] [Indexed: 02/04/2023] Open
Abstract
Background Chinese cabbage (Brassica rapa ssp. pekinensis) is a member of one of the most important leaf vegetables grown worldwide, which has experienced thousands of years in cultivation and artificial selection. The entire Chinese cabbage genome sequence, and more than forty thousand proteins have been obtained to date. The genome has undergone triplication events since its divergence from Arabidopsis thaliana (13 to 17 Mya), however a high degree of sequence similarity and conserved genome structure remain between the two species. Arabidopsis is therefore a viable reference species for comparative genomics studies. Variation in the number of members in gene families due to genome triplication may contribute to the broad range of phenotypic plasticity, and increased tolerance to environmental extremes observed in Brassica species. Transcription factors are important regulators involved in plant developmental and physiological processes. The AP2/ERF proteins, one of the most important families of transcriptional regulators, play a crucial role in plant growth, and in response to biotic and abiotic stressors. Our analysis will provide resources for understanding the tolerance mechanisms in Brassica rapa ssp. pekinensis. Results In the present study, 291 putative AP2/ERF transcription factor proteins were identified from the Chinese cabbage genome database, and compared with proteins from 15 additional species. The Chinese cabbage AP2/ERF superfamily was classified into four families, including AP2, ERF, RAV, and Soloist. The ERF family was further divided into DREB and ERF subfamilies. The AP2/ERF superfamily was subsequently divided into 15 groups. The identification, classification, phylogenetic reconstruction, conserved motifs, chromosome distribution, functional annotation, expression patterns, and interaction networks of the AP2/ERF transcription factor superfamily were predicted and analyzed. Distribution mapping results showed AP2/ERF superfamily genes were localized on the 10 Chinese cabbage chromosomes. AP2/ERF transcription factor expression levels exhibited differences among six tissue types based on expressed sequence tags (ESTs). In the AP2/ERF superfamily, 214 orthologous genes were identified between Chinese cabbage and Arabidopsis. Orthologous gene interaction networks were constructed, and included seven CBF and four AP2 genes, primarily involved in cold regulatory pathways and ovule development, respectively. Conclusions The evolution of the AP2/ERF transcription factor superfamily in Chinese cabbage resulted from genome triplication and tandem duplications. A comprehensive analysis of the physiological functions and biological roles of AP2/ERF superfamily genes in Chinese cabbage is required to fully elucidate AP2/ERF, which provides us with rich resources and opportunities to understand crop stress tolerance mechanisms.
Collapse
Affiliation(s)
- Xiaoming Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | |
Collapse
|
14
|
Lai Y, Dang F, Lin J, Yu L, Shi Y, Xiao Y, Huang M, Lin J, Chen C, Qi A, Liu Z, Guan D, Mou S, Qiu A, He S. Overexpression of a Chinese cabbage BrERF11 transcription factor enhances disease resistance to Ralstonia solanacearum in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 62:70-8. [PMID: 23201563 DOI: 10.1016/j.plaphy.2012.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/26/2012] [Indexed: 05/02/2023]
Abstract
Ethylene-responsive factors (ERFs) play diverse roles in plant growth, developmental processes and stress responses. However, the roles and underlying mechanism of ERFs remain poorly understood, especially in non-model plants. In this study, a full length cDNA of ERF gene was isolated from the cDNA library of Chinese cabbage. According to sequence alignment, we found a highly conservative AP2/ERF domain, two nuclear localization signals, and an ERF-associated Amphiphilic Repression (EAR) motif in its C-terminal region. It belonged to VIIIa group ERFs sharing the highest sequence identity with AtERF11 in all of the ERFs in Arabidopsis and designated BrERF11. BrERF11-green fluorescence protein (GFP) transient expressed in onion epidermis cells localized to the nucleus. The transcript levels of BrERF11 were induced by exogenous salicylic acid (SA), methyl jasmonate (MeJA), ethephon (ETH), and hydrogen peroxide (H(2)O(2)). Constitutive expression of BrERF11 enhanced tolerance to Ralstonia solanacearum infection in transgenic tobacco plants, which was coupled with hypersensitive response (HR), burst of H(2)O(2) and upregulation of defense-related genes including HR marker genes, SA-, JA-dependent pathogen-related genes and ET biosynthesis associated genes and downregulation of CAT1, suggesting BrERF11 may participate in pathogen-associated molecular pattern (PAMP)- and effector-triggered immunity (PTI and ETI) mediated by SA-, JA- and ET-dependent signaling mechanisms.
Collapse
Affiliation(s)
- Yan Lai
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
The putative phytocyanin genes in Chinese cabbage (Brassica rapa L.): genome-wide identification, classification and expression analysis. Mol Genet Genomics 2012; 288:1-20. [DOI: 10.1007/s00438-012-0726-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/07/2012] [Indexed: 02/07/2023]
|
16
|
Lee SC, Lim MH, Yu JG, Park BS, Yang TJ. Genome-wide characterization of the CBF/DREB1 gene family in Brassica rapa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 61:142-152. [PMID: 23148914 DOI: 10.1016/j.plaphy.2012.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/28/2012] [Indexed: 06/01/2023]
Abstract
The C-repeat/dehydration-responsive element binding transcription factors (CBF/DREBs) are important proteins in involved in responses to abiotic stress in plants. We identified ten BrDREB1 genes belonging to the CBF/DREB1 gene family in the Brassica rapa whole genome sequence, whereas six genes are found in the Arabidopsis thaliana genome. The deduced amino acid sequences of the B. rapa genes showed conserved motifs shared with other known plant CBF/DREB1s. Comparative analysis revealed that nine of the BrDREB1 genes were derived from the recent genome triplication in the tribe Brassiceae and the other one was translocated. The nine genes were located in seven of the 12 macrosyntenic blocks that are triplicated counterparts of four Arabidopsis macrosyntenic blocks harboring six CBF/DREB1 genes: one gene on each of three blocks and three tandemly arrayed genes on another block. We inspected the expression patterns of eight BrDREB1 genes by RT-PCR and microarray database searches. All eight genes were highly up-regulated during cold (4 °C) treatment, and some of them were also responsive to salt (250 mM NaCl), drought (air drying), and ABA (100 μM) treatment. Microarray data for plant developmental stages revealed that BrDREB1C2 was highly expressed during a period of cold treatment for vernalization, similar to abiotic stress-inducible genes homologous to Bn28a, Bn47, Bn115, and BoRS1, but almost opposite of BrFLC genes. Taken together, the number of BrDREB1 genes increased to 10 by genome triplication and reorganization, providing additional functions in B. rapa abiotic stress responses and development, as distinct from their Arabidopsis homologs.
Collapse
Affiliation(s)
- Sang-Choon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | |
Collapse
|
17
|
Jun L, Xiaoming W. Genome-wide identification, classification and expression analysis of genes encoding putative fasciclin-like arabinogalactan proteins in Chinese cabbage (Brassica rapa L.). Mol Biol Rep 2012; 39:10541-55. [PMID: 23053954 DOI: 10.1007/s11033-012-1940-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 10/01/2012] [Indexed: 01/10/2023]
Abstract
Fasciclin-like arabinogalactan proteins (FLAs), a subclass of arabinogalactan proteins (AGPs), have both predicted AGP-like glycosylated regions and putative fasciclin (FAS) domains, which may function in cell adhesion and communication. Previous studies have identified 21, 27, and 34 FLAs in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and wheat (Triticum aestivum), respectively. In this study, we identified 33 FLAs in the annotated genome of Chinese cabbage (Brassica rapa ssp. pekinensis line Chiifu-401-42). Sequence analysis indicated that FAS domains each contain two highly conserved regions, named H1 and H2, and that 17 FLAs from B. rapa (BrFLAs) possess both of these regions. Prediction of glycosylphosphatidylinositol (GPI) modification sites suggested that 15 BrFLAs were GPI-anchored to the plasma membrane. Additionally, 25 BrFLAs may have been duplicated during the processes that shaped the triplicated genome of the mesopolyploid B. rapa. Expression analyses indicated that BrFLA1, BrFLA11, BrFLA13, BrFLA28 and BrFLA32 were specifically expressed in inflorescence. Meanwhile, BrFLA9 (homologous to AtFLA12) is specifically expressed in stem, and BrFLA6/22 (homologous to AtFLA11) is also highly expressed in stem, suggesting BrFLA6/9/22 may have the same functions as AtFLA11/12 in A. thaliana. Taken together, the identification and bioinformatic analysis of FLAs in B. rapa will open the way for studying their biological functions in plant growth and development as well as evolutionary history of this gene family from A. thaliana to B. rapa.
Collapse
Affiliation(s)
- Li Jun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, People's Republic of China
| | | |
Collapse
|
18
|
Cortés AJ, This D, Chavarro C, Madriñán S, Blair MW. Nucleotide diversity patterns at the drought-related DREB2 encoding genes in wild and cultivated common bean (Phaseolus vulgaris L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1069-85. [PMID: 22772725 DOI: 10.1007/s00122-012-1896-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 05/11/2012] [Indexed: 05/25/2023]
Abstract
Common beans are an important food legume faced with a series of abiotic stresses the most severe of which is drought. The crop is interesting as a model for the analysis of gene phylogenies due to its domestication process, race structure, and origins in a group of wild common beans found along the South American Andes and the region of Mesoamerica. Meanwhile, the DREB2 transcription factors have been implicated in controlling non-ABA dependent responses to drought stress. With this in mind our objective was to study in depth the genetic diversity for two DREB2 genes as possible candidates for association with drought tolerance through a gene phylogenetic analysis. In this genetic diversity assessment, we analyzed nucleotide diversity at the two candidate genes Dreb2A and Dreb2B, in partial core collections of 104 wild and 297 cultivated common beans with a total of 401 common bean genotypes from world-wide germplasm analyzed. Our wild population sample covered a range of semi-mesic to very dry habitats, while our cultivated samples presented a wide spectrum of low to high drought tolerance. Both genes showed very different patterns of nucleotide variation. Dreb2B exhibited very low nucleotide diversity relative to neutral reference loci previously surveyed in these populations. This suggests that strong purifying selection has been acting on this gene. In contrast, Dreb2A exhibited higher levels of nucleotide diversity, which is indicative of adaptive selection and population expansion. These patterns were more distinct in wild compared to cultivated common beans. These approximations suggested the importance of Dreb2 genes in the context of drought tolerance, and constitute the first steps towards an association study between genetic polymorphism of this gene family and variation in drought tolerance traits. We discuss the utility of allele mining in the DREB gene family for the discovery of new drought tolerance traits from wild common bean.
Collapse
Affiliation(s)
- Andrés J Cortés
- Evolutionary Biology Centre, Uppsala University, 75105 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
19
|
Li A, Fang MD, Song WQ, Chen CB, Qi LW, Wang CG. Gene expression profiles of two intraspecific Larix lines and their reciprocal hybrids. Mol Biol Rep 2011; 39:3773-84. [PMID: 21750915 DOI: 10.1007/s11033-011-1154-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 06/30/2011] [Indexed: 12/17/2022]
Abstract
Heterosis has been widely explored in Larix breeding for more than a century, but the molecular mechanisms underlying this phenomenon remain elusive. In the present study, the genome-wide transcript profiles from two Larix genotypes and their reciprocal hybrids were analyzed using Arabidopsis 70-mer oligonucleotide microarrays. Despite sharing the same two parental lines, one of the hybrids showed obvious heterosis, while the other did not. In total, 1,171 genes were differentially expressed between the heterotic hybrid and its parents, of which 133 genes were nonadditive expression. The number of differentially expressed genes between the non-heterotic hybrid and the parents was 939, but only 54 of these genes were nonadditive expression. Further, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses indicated that most of these differentially expressed genes in the heterotic hybrid were associated with several important biological functions such as physiological processes, responses to stimulus, and starch and sucrose metabolism. The reliability of the microarray data was further validated by the Real-time quantitative RT-PCR. A high Pearson linear correlation coefficient value was detected (r = 0.759, P < 0.01). In conclusion, the gene expression profile in the Larix heterotic hybrid was significantly different from that obtained from the non-heterotic hybrid, and more nonadditive differentially expressed genes were detected in the heterotic hybrid, implying that nonadditive effects may be closely associated with the formation of heterosis in the intraspecific Larix hybridization.
Collapse
Affiliation(s)
- Ai Li
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Wang X, Chen X, Liu Y, Gao H, Wang Z, Sun G. CkDREB gene in Caragana korshinskii is involved in the regulation of stress response to multiple abiotic stresses as an AP2/EREBP transcription factor. Mol Biol Rep 2011; 38:2801-11. [PMID: 21127996 DOI: 10.1007/s11033-010-0425-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Using RACE method, a DREB-like gene-CkDREB, which contains a conserved AP2/ERF domain, was isolated from Caragana korshinskii. Full length of CkDREB cDNA was 1743 bp, including an ORF of 1038 bp and encoding a polypeptide of 345 amino acids. CkDREB protein shared high identification with other homologs from other plants. The KR-rich motif at the N-terminal region played an essential role in nuclear localization of CkDREB. Yeast one-hybrid experiments testified that CkDREB possess specific DRE element-binding activity and transcriptional activation. A variety of abiotic stress, including high salt, dehydration, low temperature all significantly induced the expression of CkDREB gene. Exogenous phytohormone ABA also slightly up-regulated the mRNA accumulation of CkDREB. Overexpression of CkDREB in transgenic tobacco plants resulted in enhanced tolerance to high salinity and osmotic stresses and induction of downstream target genes under normal conditions. These results suggested that CkDREB may play an essential role as a DREB transcription factor in regulation of stress-responsive signaling in C. korshinskii.
Collapse
Affiliation(s)
- Xuemin Wang
- Institute of Animal Science, Chinese Academy of Agricultural Science, 2-Yuan-Ming-Yuan West Rd., Haidian District, Beijing, 100193, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Zhuang J, Sun CC, Zhou XR, Xiong AS, Zhang J. Isolation and characterization of an AP2/ERF-RAV transcription factor BnaRAV-1-HY15 in Brassica napus L. HuYou15. Mol Biol Rep 2010; 38:3921-8. [PMID: 21116861 DOI: 10.1007/s11033-010-0508-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 11/13/2010] [Indexed: 11/29/2022]
Abstract
Transcriptional regulation is thought to be important for stress tolerance and response of transcription factors. RAV subfamily transcription factor contains an AP2- and B3-DNA binding domain, which belongs to the AP2/ERF family. It encodes transcriptional regulators with a variety of functions involved in the developmental and physiological processes in plants. Here, a RAV-like gene, BnaRAV-1-HY15, was isolated from Brassica napus L. cv HuYou15. Sequence homology analysis revealed that the BnaRAV-1-HY15 factor belongs to the RAV subfamily of the AP2/ERF family, and it shares high identity with the AtRAV2 of Arabidopsis. Sequence and three-dimensional structural analyses revealed that BnaRAV-1-HY15 contains two distinct DNA-binding domains, one AP2 domain together with one B3 domain. The AP2 domain composed of 54 amino acids and present in N-terminal region. In addition to AP2 domain, 117 amino acids show significant sequence similarity to the B3 domain present in C-terminal region. Semi-quantitative RT-PCR analysis indicated that the BnaRAV-1-HY15 gene is induced by cold, NaCl and PEG treatments. Under ABA stress, the expression of BnaRAV-1-HY15 gene was not detected. The gene expression was also not traceable from the tissues of pod, bud, petal, leaf, stem and root of normally grown B. napus L. HuYou15 plant at the period of flowering and seed development.
Collapse
Affiliation(s)
- Jing Zhuang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | | | | | | | | |
Collapse
|
22
|
Li Y, Nie C, Cao J. Isolation and characterization of a novel BcMF14 gene from Brassica campestris ssp. chinensis. Mol Biol Rep 2010; 38:1821-9. [PMID: 20857218 DOI: 10.1007/s11033-010-0298-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 09/03/2010] [Indexed: 11/30/2022]
Abstract
A putative RALF (rapid alkalinization factor)-like gene (GenBank accession number EF523517), named BcMF14, was isolated from Chinese cabbage (Brassica campestris L. ssp. chinensis Makino, syn. B. rapa ssp. chinensis) by rapid amplification of cDNA ends (RACE) based on a cDNA-AFLP differential fragment exclusively expressed in fertile line. Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) discovered that BcMF14 was prominently expressed in stage four and five flower buds of fertile line, no expression in vegetative structures or in sterility line. Detailed RT-PCR illuminated its strong expression in stamens. Successful suppression of BcMF14 gene expression greatly reduced the normal pollen grains. The frequency of abnormal pollen grains was 48.95% in the mutant with many shriveled pollen grains with irregular shape and some larger ones with deep hollows along the germination ditch. Pollen germination was stopped because of the severely twisted pollen tubes. These results demonstrate a potential role of the BcMF14 gene in the development of male gametogenesis in Chinese cabbage.
Collapse
Affiliation(s)
- Yanyan Li
- School of Life Sciences, Fuyang Teachers College, Fuyang 230032, China.
| | | | | |
Collapse
|
23
|
Seo YJ, Park JB, Cho YJ, Jung C, Seo HS, Park SK, Nahm BH, Song JT. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Mol Cells 2010; 30:271-7. [PMID: 20803085 DOI: 10.1007/s10059-010-0114-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/11/2010] [Accepted: 06/14/2010] [Indexed: 11/24/2022] Open
Abstract
Ethylene-responsive factors (ERFs), within a subgroup of the AP2/ERF transcription factor family, are involved in diverse plant reactions to biotic or abiotic stresses. Here, we report that overexpression of an ERF gene from Brassica rapa ssp. pekinensis (BrERF4) led to improved tolerance to salt and drought stresses in Arabidopsis. It also significantly affected the growth and development of transgenic plants. We detected that salt-induced expressions of a transcriptional repressor gene, AtERF4, and some Ser/Thr protein phosphatase2C genes, ABI1, ABI2 and AtPP2CA, were suppressed in BrERF4-overexpressing Arabidopsis plants. Furthermore, BrERF4 was induced by treatment with ethylene or methyljasmonate, but not by abscisic acid or NaCl in B. rapa. These results suggest that BrERF4 is activated through a network of different signaling pathways in response to salinity and drought.
Collapse
Affiliation(s)
- Yean Joo Seo
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Thanh T, Chi VTQ, Abdullah MP, Omar H, Noroozi M, Ky H, Napis S. Construction of cDNA library and preliminary analysis of expressed sequence tags from green microalga Ankistrodesmus convolutus Corda. Mol Biol Rep 2010; 38:177-82. [PMID: 20354903 DOI: 10.1007/s11033-010-0092-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 03/15/2010] [Indexed: 11/29/2022]
Abstract
Green microalga Ankistrodesmus convolutus Corda is a fast growing alga which produces appreciable amount of carotenoids and polyunsaturated fatty acids. To our knowledge, this is the first report on the construction of cDNA library and preliminary analysis of ESTs for this species. The titers of the primary and amplified cDNA libraries were 1.1×10(6) and 6.0×10(9) pfu/ml respectively. The percentage of recombinants was 97% in the primary library and a total of 337 out of 415 original cDNA clones selected randomly contained inserts ranging from 600 to 1,500 bps. A total of 201 individual ESTs with sizes ranging from 390 to 1,038 bps were then analyzed and the BLASTX score revealed that 35.8% of the sequences were classified as strong match, 38.3% as nominal and 25.9% as weak match. Among the ESTs with known putative function, 21.4% of them were found to be related to gene expression, 14.4% ESTs to photosynthesis, 10.9% ESTs to metabolism, 5.5% ESTs to miscellaneous, 2.0% to stress response, and the remaining 45.8% were classified as novel genes. Analysis of ESTs described in this paper can be an effective approach to isolate and characterize new genes from A. convolutus and thus the sequences obtained represented a significant contribution to the extensive database of sequences from green microalgae.
Collapse
Affiliation(s)
- Tran Thanh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM-Serdang, Selangor Darul Ehsan, Malaysia
| | | | | | | | | | | | | |
Collapse
|
25
|
Isolation and characterization of gene encoding G protein α subunit protein responsive to plant hormones and abiotic stresses in Brassica napus. Mol Biol Rep 2010; 37:3957-65. [DOI: 10.1007/s11033-010-0054-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 03/05/2010] [Indexed: 11/27/2022]
|
26
|
Expressed sequence tags-based identification of genes in a biocontrol strain Trichoderma asperellum. Mol Biol Rep 2010; 37:3673-81. [PMID: 20195770 DOI: 10.1007/s11033-010-0019-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
Trichoderma asperellum, a filamentous soil fungus, is an effective biocontrol agent against many fungal plant pathogenic species. In the present study, we investigated the biological control properties of the strain T. asperellum T4. T. asperellum fermentation products significantly decreased the ability of Rhizoctonia solani and Sclerotinia sclerotiorum to infect rice and soybean, respectively. To further elucidate the biocontrol mechanisms of T. asperellum at the molecular level, a cDNA library was constructed from its mycelium. In total, 3114 expressed sequence tags (ESTs) were generated, which represented 1,554 unigenes, including 354 contigs and 1,200 singletons. Among these unigenes, 731 represented known genes while 823 were novel genes. Forty-six unigenes potentially involved in biocontrol processes were identified from the EST collection. Among them, the expressions of 16 genes were studied, and 15 genes were highly differentially regulated during confrontation with 2 phytopathogens, suggesting that they play roles in the T. asperellum response to phytopathogens. Our study may provide helpful insight in the mechanism of biocontrol by T. asperellum T4 against plant pathogens.
Collapse
|