1
|
Global analysis of the association between pig muscle fatty acid composition and gene expression using RNA-Seq. Sci Rep 2023; 13:535. [PMID: 36631502 PMCID: PMC9834388 DOI: 10.1038/s41598-022-27016-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Fatty acids (FAs) play an essential role as mediators of cell signaling and signal transduction, affecting metabolic homeostasis and determining meat quality in pigs. However, FAs are transformed by the action of several genes, such as those encoding desaturases and elongases of FAs in lipogenic tissues. The aim of the current work was to identify candidate genes, biological processes, and pathways involved in the modulation of intramuscular FA profile from longissimus dorsi muscle. FA profile by gas chromatography of methyl esters and gene expression by RNA-Seq were determined in 129 Iberian × Duroc backcrossed pigs. An association analysis between the muscle transcriptome and its FA profile was performed, followed by a concordance and functional analysis. Overall, a list of well-known (e.g., PLIN1, LEP, ELOVL6, SC5D, NCOA2, ACSL1, MDH1, LPL, LGALS12, TFRC, GOT1, and FBP1) and novel (e.g., TRARG1, TANK, ENSSSCG00000011196, and ENSSSCG00000038429) candidate genes was identified, either in association with specific or several FA traits. Likewise, several of these genes belong to biological processes and pathways linked to energy, lipid, and carbohydrate metabolism, which seem determinants in the modulation of FA compositions. This study can contribute to elucidate the complex relationship between gene expression and FA profile in pig muscle.
Collapse
|
2
|
Schnerwitzki D, Hayn C, Perner B, Englert C. Wt1 Positive dB4 Neurons in the Hindbrain Are Crucial for Respiration. Front Neurosci 2020; 14:529487. [PMID: 33328840 PMCID: PMC7734174 DOI: 10.3389/fnins.2020.529487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 11/10/2020] [Indexed: 02/02/2023] Open
Abstract
Central pattern generator (CPG) networks coordinate the generation of rhythmic activity such as locomotion and respiration. Their development is driven by various transcription factors, one of which is the Wilms tumor protein (Wt1). It is present in dI6 neurons of the mouse spinal cord, and involved in the coordination of locomotion. Here we report about the presence of Wt1 in neurons of the caudoventral medulla oblongata and their impact on respiration. By employing immunohistofluorescence staining, we were able to characterize these Wt1 positive (+) cells as dB4 neurons. The temporal occurrence of Wt1 suggests a role for this transcription factor in the differentiation of dB4 neurons during embryonic and postnatal development. Conditional knockout of Wt1 in these cells caused an altered population size of V0 neurons already in the developing hindbrain, leading to a decline in the respiration rate in the adults. Thereby, we confirmed and extended the previously proposed similarity between dB4 neurons in the hindbrain and dI6 neurons of the spinal cord, in terms of development and function. Ablation of Wt1+ dB4 neurons resulted in the death of neonates due to the inability to initiate respiration, suggesting a vital role for Wt1+ dB4 neurons in breathing. These results expand the role of Wt1 in the CNS and show that, in addition to its function in differentiation of dI6 neurons, it also contributes to the development of dB4 neurons in the hindbrain that are critically involved in the regulation of respiration.
Collapse
Affiliation(s)
- Danny Schnerwitzki
- Molecular Genetics Laboratory, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Christian Hayn
- Molecular Genetics Laboratory, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Birgit Perner
- Molecular Genetics Laboratory, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.,Core Facility Imaging, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Christoph Englert
- Molecular Genetics Laboratory, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.,Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
3
|
Chen M, Yao YL, Yang Y, Zhu M, Tang Y, Liu S, Li K, Tang Z. Comprehensive Profiles of mRNAs and miRNAs Reveal Molecular Characteristics of Multiple Organ Physiologies and Development in Pigs. Front Genet 2019; 10:756. [PMID: 31552085 PMCID: PMC6737989 DOI: 10.3389/fgene.2019.00756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
The pig (Sus scrofa) is not only an important livestock animal but also widely used as a biomedical model. However, the understanding of the molecular characteristics of organs and of the developmental skeletal muscle of the pig is severely limited. Here, we performed a comprehensive transcriptome profiling of mRNAs and miRNAs across nine tissues and three skeletal muscle developmental stages in the Guizhou miniature pig. The reproductive organs (ovary and testis) had greater transcriptome complexity and activity than other tissues, and the highest transcriptome similarity was between skeletal muscle and heart (R = 0.79). We identified 1,819 mRNAs and 96 miRNAs to be tissue-specific in nine organs. Testis had the largest number of tissue-specific mRNAs (992) and miRNAs (40). Only 15 genes and two miRNAs were specifically expressed in skeletal muscle and fat, respectively. During postnatal skeletal muscle development, the mRNAs associated with focal adhesion, Notch signaling, protein digestion, and absorption pathways were up-regulated from D0 to D30 and then down-regulated from D30 and D240, while genes with opposing expression patterns were significantly enriched in the oxidative phosphorylation and proteasome pathways. The miRNAs mainly regulated genes associated with insulin, Wnt, fatty acid biosynthesis, Notch, MAPK, TGF-beta, insulin secretion, ECM-receptor interaction, focal adhesion, and calcium signaling pathways. We also identified 37 new miRNA-mRNA interaction pairs involved in skeletal muscle development. Overall, our data not only provide a rich resource for understanding pig organ physiology and development but also aid the study of the molecular functions of mRNA and miRNA in mammals.
Collapse
Affiliation(s)
- Muya Chen
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yi Long Yao
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yalan Yang
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Min Zhu
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yijie Tang
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Siyuan Liu
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhonglin Tang
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Li YL, Gao SJ, Xu H, Liu Y, Li HL, Chen XY, Ning GZ, Feng SQ. The association of rs11190870 near LBX1 with the susceptibility and severity of AIS, a meta-analysis. Int J Surg 2018. [PMID: 29535018 DOI: 10.1016/j.ijsu.2018.01.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Adolescent idiopathic scoliosis (AIS) is the most common structural deformity of the spine. Genetics constitute largely to AIS, and the rs11190870 polymorphism has the potential for use in public health and clinical settings as a predictor of AIS risk. The aim of the present meta-analysis was to provide exhaustive evidence to evaluate the association of rs11190870 with the susceptibility and severity of adolescent idiopathic scoliosis (AIS) in multiple ethnic groups and different genders. MATERIALS AND METHODS The professional databases, including PubMed, Embase, Social Sciences Citation Index, CINAHL, and International Bibliography of the Social Sciences, were searched from 1966 to October 2015. No language restriction was applied. Reference lists of all the selected articles were hand-searched for any additional studies. Three authors independently extracted data from all eligible studies. The data were analyzed by meta-analysis using fixed-effects or random-effects models with mean differences and risk ratios for continuous and dichotomous variables, respectively. RESULTS Eight studies were included, and the pooled analysis suggested that the T genotype of SNP rs11190870 leads to a higher risk of AIS in multiple ethnic groups regardless of gender (Total:OR, 1.66, 95% CI 1.53, 1.79; I2 = 37.3%, P = 0.000, Female: OR, 1.62, 95% CI 1.50, 1.73; I2 = 26.7%, P = 0.000, Male: OR, 1.79, 95% CI 1.38, 2.20; I2 = 0.00%, P = 0.000). Additionally, the TT and TC genotype had a larger Cobb angle than those with the CC genotype in the overall and female Asian populations. CONCLUSION A significant association of rs11190870 with AIS was observed in multiple ethnic groups regardless of gender. Additionally, a significant association was found between rs11190870 and curve severity in the overall and female Asian populations. Due to the limited data and clinical heterogeneity, further studies with large sample sizes are required.
Collapse
Affiliation(s)
- Yu-Lin Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, PR China.
| | - Shi-Jie Gao
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, PR China.
| | - Hong Xu
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, PR China.
| | - Yang Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, PR China.
| | - Hai-Liang Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, PR China.
| | - Xing-Yu Chen
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, PR China.
| | - Guang-Zhi Ning
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, PR China.
| | - Shi-Qing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, PR China.
| |
Collapse
|
5
|
Zhao Y, Gao P, Li W, Zhang Y, Xu K, Guo X, Li B, Cao G. Study on the Developmental Expression ofLbx1Gene inLongissimus Dorsiof Mashen and Large White Pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2015.3720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Jiang H, Qiu X, Dai J, Yan H, Zhu Z, Qian B, Qiu Y. Association of rs11190870 near LBX1 with adolescent idiopathic scoliosis susceptibility in a Han Chinese population. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2012; 22:282-6. [PMID: 23096252 DOI: 10.1007/s00586-012-2532-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/02/2012] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate whether rs11190870 near LBX1 correlates with the susceptibility or curve progression of adolescent idiopathic scoliosis (AIS) in a Han Chinese population. METHODS A total of 949 AIS patients and 976 age-matched healthy controls were recruited. All the subjects were genotyped using the PCR-based invader assay. Case-control study and case-only study were performed to define the contribution of rs11190870 to predisposition and curve severity of AIS. Additionally, we further conducted a meta-analysis of the study findings together with those of previously reported studies. RESULTS A significant association of rs11190870 with AIS was observed in the Han Chinese population (P = 1.8 × 10(-9); odd ratio = 1.51; 95 % confidence interval = 1.33-1.71), and AIS patients with TT genotype had a larger Cobb angle than those with TC or CC genotype (P = 0.005). The meta-analysis confirmed that the positive association of this SNP with AIS in the East Asian population. CONCLUSIONS The SNP rs11190870 near LBX1 is associated with both susceptibility and curve progression of AIS.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road No 321, 210008 Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Schmitteckert S, Ziegler C, Kartes L, Rolletschek A. Transcription factor lbx1 expression in mouse embryonic stem cell-derived phenotypes. Stem Cells Int 2011; 2011:130970. [PMID: 21941564 PMCID: PMC3175398 DOI: 10.4061/2011/130970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/10/2011] [Indexed: 11/28/2022] Open
Abstract
Transcription factor Lbx1 is known to play a role
in the migration of muscle progenitor cells in limb
buds and also in neuronal determination processes. In
addition, involvement of Lbx1 in cardiac neural crest-related cardiogenesis was postulated. Here, we used
mouse embryonic stem (ES) cells which have the
capacity to develop into cells of all three primary
germ layers. During in vitro
differentiation, ES cells recapitulate cellular
developmental processes and gene expression patterns
of early embryogenesis. Transcript analysis revealed a
significant upregulation of Lbx1 at
the progenitor cell stage. Immunofluorescence staining
confirmed the expression of Lbx1 in skeletal muscle
cell progenitors and GABAergic neurons. To verify the
presence of Lbx1 in cardiac cells, triple
immunocytochemistry of ES cell-derived cardiomyocytes
and a quantification assay were performed at different
developmental stages. Colabeling of Lbx1 and cardiac
specific markers troponin T, α-actinin, GATA4,
and Nkx2.5 suggested a potential role in early
myocardial development.
Collapse
Affiliation(s)
- Stefanie Schmitteckert
- Institute for Biological Interfaces 1, Karlsruhe Institute of Technology (KIT) Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | |
Collapse
|