1
|
Duan S, Guan S, Fei R, Sun T, Kang X, Xin R, Song W, Sun X. Unraveling the role of PlARF2 in regulating deed formancy in Paeonia lactiflora. PLANTA 2024; 259:133. [PMID: 38668881 DOI: 10.1007/s00425-024-04411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
MAIN CONCLUSION PlARF2 can positively regulate the seed dormancy in Paeonia lactiflora Pall. and bind the RY cis-element. Auxin, a significant phytohormone influencing seed dormancy, has been demonstrated to be regulated by auxin response factors (ARFs), key transcriptional modulators in the auxin signaling pathway. However, the role of this class of transcription factors (TFs) in perennials with complex seed dormancy mechanisms remains largely unexplored. Here, we cloned and characterized an ARF gene from Paeonia lactiflora, named PlARF2, which exhibited differential expression levels in the seeds during the process of seed dormancy release. The deduced amino acid sequence of PlARF2 had high homology with those of other plants and contained typical conserved Auxin_resp domain of the ARF family. Phylogenetic analysis revealed that PlARF2 was closely related to VvARF3 in Vitis vinifera. The subcellular localization and transcriptional activation assay showed that PlARF2 is a nuclear protein possessing transcriptional activation activity. The expression levels of dormancy-related genes in transgenic callus indicated that PlARF2 was positively correlated with the contents of PlABI3 and PlDOG1. The germination assay showed that PlARF2 promoted seed dormancy. Moreover, TF Centered Yeast one-hybrid assay (TF-Centered Y1H), electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter assay analysis (Dual-Luciferase) provided evidence that PlARF2 can bind to the 'CATGCATG' motif. Collectively, our findings suggest that PlARF2, as TF, could be involved in the regulation of seed dormancy and may act as a repressor of germination.
Collapse
Affiliation(s)
- Siyang Duan
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Shixin Guan
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Riwen Fei
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Tianyi Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Xuening Kang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Rujie Xin
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Wenhui Song
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Xiaomei Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China.
| |
Collapse
|
2
|
Lv J, Feng Y, Zhai L, Jiang L, Wu Y, Huang Y, Yu R, Wu T, Zhang X, Wang Y, Han Z. MdARF3 switches the lateral root elongation to regulate dwarfing in apple plants. HORTICULTURE RESEARCH 2024; 11:uhae051. [PMID: 38706578 PMCID: PMC11069427 DOI: 10.1093/hr/uhae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/17/2023] [Indexed: 05/07/2024]
Abstract
Apple rootstock dwarfing and dense planting are common practices in apple farming. However, the dwarfing mechanisms are not understood. In our study, the expression of MdARF3 in the root system of dwarfing rootstock 'M9' was lower than in the vigorous rootstock from Malus micromalus due to the deletion of the WUSATAg element in the promoter of the 'M9' genotype. Notably, this deletion variation was significantly associated with dwarfing rootstocks. Subsequently, transgenic tobacco (Nicotiana tabacum) cv. Xanthi was generated with the ARF3 promoter from 'M9' and M. micromalus genotypes. The transgenic apple with 35S::MdARF3 was also obtained. The transgenic tobacco and apple with the highly expressed ARF3 had a longer root system and a higher plant height phenotype. Furthermore, the yeast one-hybrid, luciferase, electrophoretic mobility shift assays, and Chip-qPCR identified MdWOX4-1 in apples that interacted with the pMm-ARF3 promoter but not the pM9-ARF3 promoter. Notably, MdWOX4-1 significantly increased the transcriptional activity of MdARF3 and MdLBD16-2. However, MdARF3 significantly decreased the transcriptional activity of MdLBD16-2. Further analysis revealed that MdARF3 and MdLBD16-2 were temporally expressed during different stages of lateral root development. pMdLBD16-2 was mainly expressed during the early stage of lateral root development, which promoted lateral root production. On the contrary, pMmARF3 was expressed during the late stage of lateral root development to promote elongation. The findings in our study will shed light on the genetic causes of apple plant dwarfism and provide strategies for molecular breeding of dwarfing apple rootstocks.
Collapse
Affiliation(s)
- Jiahong Lv
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yi Feng
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Longmei Zhai
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lizhong Jiang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yue Wu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yimei Huang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Runqi Yu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ting Wu
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xinzhong Zhang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yi Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhenhai Han
- Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
3
|
El Mamoun I, Bouzroud S, Zouine M, Smouni A. The Knockdown of AUXIN RESPONSE FACTOR 2 Confers Enhanced Tolerance to Salt and Drought Stresses in Tomato ( Solanum lycopersicum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2804. [PMID: 37570958 PMCID: PMC10420960 DOI: 10.3390/plants12152804] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Auxin response factors (ARFs) act as key elements of the auxin-signaling pathway and play important roles in the process of a plant's growth, development, and response to environmental conditions. We studied the implication of the SlARF2 gene in the tomato response to salt (150 mM of NaCl) and drought (15% PEG 20000) stresses. The functional characterization of SlARF2 knockdown tomato mutants revealed that the downregulation of this gene enhanced primary root length and root branching and reduced plant wilting. At the physiological level, the arf2 mutant line displayed higher chlorophyll, soluble sugars, proline, and relative water contents as well as lower stomatal conductance and a decreased malondialdehyde content. Moreover, SlARF2 knockdown tomato mutants demonstrated higher activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) under salt and drought stresses than the wild type. Indeed, the stress tolerance of the arf2 mutant was also reflected by the upregulation of stress-related genes involved in ROS scavenging and plant defense, including SOD, CAT, dehydration-responsive element-binding protein, and early responsive to dehydration, which can ultimately result in a better resistance to salt and drought stresses. Furthermore, the transcriptional levels of the Δ1-pyrroline-5-carboxylate synthase (P5CS) gene were upregulated in the arf2 mutant after stress, in correlation with the higher levels of proline. Taken together, our findings reveal that SlARF2 is implicated in salt and drought tolerance in tomato and provides some considerable elements for improving the abiotic stress tolerance and increasing the crop yields of tomato.
Collapse
Affiliation(s)
- Ibtihaj El Mamoun
- Laboratoire de Biotechnologie et de Physiologie Végétales, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco;
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse Paul Sabatier (UPS), Toulouse-INP, 31320 Auzeville-Tolosane, France
| | - Sarah Bouzroud
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco;
| | - Mohamed Zouine
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse Paul Sabatier (UPS), Toulouse-INP, 31320 Auzeville-Tolosane, France
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et de Physiologie Végétales, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco;
| |
Collapse
|
4
|
Uncovering miRNA-mRNA Regulatory Modules in Developing Xylem of Pinus massoniana via Small RNA and Degradome Sequencing. Int J Mol Sci 2021; 22:ijms221810154. [PMID: 34576316 PMCID: PMC8472836 DOI: 10.3390/ijms221810154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022] Open
Abstract
Xylem is required for the growth and development of higher plants to provide water and mineral elements. The thickening of the xylem secondary cell wall (SCW) not only improves plant survival, but also provides raw materials for industrial production. Numerous studies have found that transcription factors and non-coding RNAs regulate the process of SCW thickening. Pinus massoniana is an important woody tree species in China and is widely used to produce materials for construction, furniture, and packaging. However, the target genes of microRNAs (miRNAs) in the developing xylem of P. massoniana are not known. In this study, a total of 25 conserved miRNAs and 173 novel miRNAs were identified via small RNA sequencing, and 58 differentially expressed miRNAs were identified between the developing xylem (PM_X) and protoplasts isolated from the developing xylem (PM_XP); 26 of these miRNAs were significantly up-regulated in PM_XP compared with PM_X, and 32 were significantly down-regulated. A total of 153 target genes of 20 conserved miRNAs and 712 target genes of 113 novel miRNAs were verified by degradome sequencing. There may be conserved miRNA-mRNA modules (miRNA-MYB, miRNA-ARF, and miRNA-LAC) involved in softwood and hardwood formation. The results of qRT-PCR-based parallel validation were in relatively high agreement. This study explored the potential regulatory network of miRNAs in the developing xylem of P. massoniana and provides new insights into wood formation in coniferous species.
Collapse
|
5
|
Identification of miR390-TAS3-ARF pathway in response to salt stress in Helianthus tuberosus L. Gene 2020; 738:144460. [PMID: 32045659 DOI: 10.1016/j.gene.2020.144460] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
MicroRNA390 (miR390), an ancient and highly conserved miRNA family in land plants, plays multiple roles in plant growth, development and stress responses. In this study, we isolated and identified MIR390, miR390, TAS3a/b/c, tasiARF-1/2/3 (trans-acting small interfering RNAs influencing Auxin Response Factors) and ARF2/3/4 in Jerusalem artichoke (Helianthus tuberosus L.). Treatment with 100 mM NaCl induced expression of miR390, increased cleavage of TAS3, produced high levels of tasiARFs, and subsequently enhanced cleavage of ARF3/4, which was most likely associated with salt tolerance of the plants. In contrast, treatment with 300 mM NaCl inhibited expression of miR390, attenuated cleavage of TAS3, produced a small amount of tasiARFs, and reduced cleavage of ARF3/4. We proposed that ARF2, one of the targets of tasiARFs, induced under salinity was likely to play an active role in salt tolerance of Jerusalem artichoke. The study of the miR390-TAS3-ARF model in Jerusalem artichoke may broaden our understanding of salt tolerance mechanisms, and provides a theoretical support for further genetic identification and breeding crops with increased tolerance to salt stress.
Collapse
|
6
|
|
7
|
Liu S, Zhang Y, Feng Q, Qin L, Pan C, Lamin-Samu AT, Lu G. Tomato AUXIN RESPONSE FACTOR 5 regulates fruit set and development via the mediation of auxin and gibberellin signaling. Sci Rep 2018; 8:2971. [PMID: 29445121 PMCID: PMC5813154 DOI: 10.1038/s41598-018-21315-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/02/2018] [Indexed: 12/21/2022] Open
Abstract
Auxin response factors (ARFs) encode transcriptional factors that function in the regulation of plant development processes. A tomato ARF gene, SlARF5, was observed to be expressed at high levels in emasculated ovaries but maintained low expression levels in pollinated ovaries. The amiRNA SlARF5 lines exhibited ovary growth and formed seedless fruits following emasculation. These parthenocarpic fruits developed fewer locular tissues, and the fruit size and weight were decreased in transgenic lines compared to those of wild-type fruits. Gene expression analysis demonstrated that several genes involved in the auxin-signaling pathway were downregulated, whereas some genes involved in the gibberellin-signaling pathway were enhanced by the decreased SlARF5 mRNA levels in transgenic plants, indicating that SlARF5 may play an important role in regulating both the auxin- and gibberellin-signaling pathways during fruit set and development.
Collapse
Affiliation(s)
- Songyu Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Youwei Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Qiushuo Feng
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Li Qin
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Changtian Pan
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Anthony Tumbeh Lamin-Samu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Gang Lu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Randall RS, Miyashima S, Blomster T, Zhang J, Elo A, Karlberg A, Immanen J, Nieminen K, Lee JY, Kakimoto T, Blajecka K, Melnyk CW, Alcasabas A, Forzani C, Matsumoto-Kitano M, Mähönen AP, Bhalerao R, Dewitte W, Helariutta Y, Murray JAH. AINTEGUMENTA and the D-type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins. Biol Open 2015; 4:1229-36. [PMID: 26340943 PMCID: PMC4610221 DOI: 10.1242/bio.013128] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Higher plant vasculature is characterized by two distinct developmental phases. Initially, a well-defined radial primary pattern is established. In eudicots, this is followed by secondary growth, which involves development of the cambium and is required for efficient water and nutrient transport and wood formation. Regulation of secondary growth involves several phytohormones, and cytokinins have been implicated as key players, particularly in the activation of cell proliferation, but the molecular mechanisms mediating this hormonal control remain unknown. Here we show that the genes encoding the transcription factor AINTEGUMENTA (ANT) and the D-type cyclin CYCD3;1 are expressed in the vascular cambium of Arabidopsis roots, respond to cytokinins and are both required for proper root secondary thickening. Cytokinin regulation of ANT and CYCD3 also occurs during secondary thickening of poplar stems, suggesting this represents a conserved regulatory mechanism.
Collapse
Affiliation(s)
- Ricardo S Randall
- Department of Molecular Biosciences, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| | - Shunsuke Miyashima
- Department of Biological Sciences, Osaka University, Graduate School of Science, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Tiina Blomster
- Department of Biosciences, Institute of Biotechnology, Viikinkaari 1 (P.O.Box 65), 00014, University of Helsinki, Helsinki, Finland
| | - Jing Zhang
- Department of Biosciences, Institute of Biotechnology, Viikinkaari 1 (P.O.Box 65), 00014, University of Helsinki, Helsinki, Finland
| | - Annakaisa Elo
- Department of Biosciences, Institute of Biotechnology, Viikinkaari 1 (P.O.Box 65), 00014, University of Helsinki, Helsinki, Finland
| | - Anna Karlberg
- Department of Plant Physiology, Umeå University, Umeå SE-901 87, Sweden
| | - Juha Immanen
- Department of Biosciences, Institute of Biotechnology, Viikinkaari 1 (P.O.Box 65), 00014, University of Helsinki, Helsinki, Finland
| | - Kaisa Nieminen
- Department of Biosciences, Institute of Biotechnology, Viikinkaari 1 (P.O.Box 65), 00014, University of Helsinki, Helsinki, Finland
| | - Ji-Young Lee
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Tatsuo Kakimoto
- Department of Biological Sciences, Osaka University, Graduate School of Science, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Karolina Blajecka
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | - Charles W Melnyk
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | - Annette Alcasabas
- Department of Molecular Biosciences, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| | - Celine Forzani
- Department of Molecular Biosciences, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| | - Miho Matsumoto-Kitano
- Department of Biological Sciences, Osaka University, Graduate School of Science, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Ari Pekka Mähönen
- Department of Biosciences, Institute of Biotechnology, Viikinkaari 1 (P.O.Box 65), 00014, University of Helsinki, Helsinki, Finland
| | | | - Walter Dewitte
- Department of Molecular Biosciences, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| | - Ykä Helariutta
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | - James A H Murray
- Department of Molecular Biosciences, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK
| |
Collapse
|
9
|
Shen C, Yue R, Sun T, Zhang L, Yang Y, Wang H. OsARF16, a transcription factor regulating auxin redistribution, is required for iron deficiency response in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:148-58. [PMID: 25576000 DOI: 10.1016/j.plantsci.2014.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 05/18/2023]
Abstract
Plant response to iron deficiency is the most important feature for survival in Fe-limited soils. Several phytohormones, including auxin, are involved in iron uptake and homeostasis. However, the mechanisms behind how auxin participates in the iron deficiency response in rice are largely unknown. We found that OsARF16 was involved in the iron deficiency response and the induction of iron deficiency response genes. Most Fe-deficient symptoms could be partially restored in the osarf16 mutant, including dwarfism, photosynthesis decline, a reduction in iron content and root system architecture (RSA) regulation. OsARF16 expression was induced in the roots and shoots by Fe deprivation. Restoration of the phenotype could also be mimicked by 1-NOA, an auxin influx inhibitor. Furthermore, the qRT-PCR data indicated that the induction of Fe-deficiency response genes by iron deficiency was more compromised in the osarf16 mutant than in Nipponbare. In conclusion, osarf16, an auxin insensitive mutant, was involved in iron deficiency response in rice. Our results reveal a new biological function for OsARF16 and provide important information on how ARF-medicated auxin signaling affects iron signaling and the iron deficiency response. This work may help us to improve production or increased Fe nutrition of rice to iron deficiency by regulating auxin signaling.
Collapse
Affiliation(s)
- Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Runqing Yue
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Tao Sun
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Yanjun Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
10
|
Shen C, Yue R, Yang Y, Zhang L, Sun T, Tie S, Wang H. OsARF16 is involved in cytokinin-mediated inhibition of phosphate transport and phosphate signaling in rice (Oryza sativa L.). PLoS One 2014; 9:e112906. [PMID: 25386911 PMCID: PMC4227850 DOI: 10.1371/journal.pone.0112906] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/16/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Plant responses to phytohormone stimuli are the most important biological features for plants to survive in a complex environment. Cytokinin regulates growth and nutrient homeostasis, such as the phosphate (Pi) starvation response and Pi uptake in plants. However, the mechanisms underlying how cytokinin participates in Pi uptake and Pi signaling are largely unknown. In this study, we found that OsARF16 is required for the cytokinin response and is involved in the negative regulation of Pi uptake and Pi signaling by cytokinin. PRINCIPAL FINDINGS The mutant osarf16 showed an obvious resistance to exogenous cytokinin treatment and the expression level of the OsARF16 gene was considerably up-regulated by cytokinin. Cytokinin (6-BA) application suppressed Pi uptake and the Pi starvation response in wild-type Nipponbare (NIP) and all these responses were compromised in the osarf16 mutant. Our data showed that cytokinin inhibits the transport of Pi from the roots to the shoots and that OsARF16 is involved in this process. The Pi content in the osarf16 mutant was much higher than in NIP under 6-BA treatment. The expressions of PHOSPHATE TRANSPORTER1 (PHT1) genes, phosphate (Pi) starvation-induced (PSI) genes and purple PAPase genes were higher in the osarf16 mutant than in NIP under cytokinin treatment. CONCLUSION Our results revealed a new biological function for OsARF16 in the cytokinin-mediated inhibition of Pi uptake and Pi signaling in rice.
Collapse
Affiliation(s)
- Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- * E-mail: (CS); (ST); (HW)
| | - Runqing Yue
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yanjun Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, United States of America
| | - Tao Sun
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Shuanggui Tie
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- * E-mail: (CS); (ST); (HW)
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- * E-mail: (CS); (ST); (HW)
| |
Collapse
|
11
|
Abstract
An important aspect of studies on auxin is auxin response factors (ARFs), which activate or repress the auxin response genes by binding to auxin response elements (AuxREs) on their promoters. In this review, we focused on molecular biological advances of plant ARF families, and discussed ARF structures, regulation of ARF gene expression, the roles of ARFs in regulating the development of plants and in signal transduction and the mechanisms involved in the target gene regulation by ARFs. The phylogenetic relationships of ARFs in plants are close and most of them have 4 domains. ARFs are expressed in various tissues. Their expressions are regulated at both transcriptional and post-transcriptional levels. They play important roles in the interactions between auxin and other hormones.
Collapse
|
12
|
Qi Y, Wang S, Shen C, Zhang S, Chen Y, Xu Y, Liu Y, Wu Y, Jiang D. OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice (Oryza sativa). THE NEW PHYTOLOGIST 2012; 193:109-120. [PMID: 21973088 DOI: 10.1111/j.1469-8137.2011.03910.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
• Auxin has an important role in maintaining optimal root system architecture (RSA) that can cope with growth reductions of crops caused by water or nutrient shortages. However, the mechanism of controlling RSA remains largely unclear. Here, we found a limiting factor of RSA--OsARF12--an auxin response factor whose knockout led to decreased primary root length in rice (Oryza sativa). • OsARF12 as a transcription activator can facilitate the expression of the auxin response element DR5::GFP, and OsARF12 was inhibited by osa-miRNA167d by transient expression in tobacco and rice callus. • The root elongation zones of osarf12 and osarf12/25, which had lower auxin concentrations, were distinctly shorter than for the wild-type, possibly as a result of decreased expression of auxin synthesis genes OsYUCCAs and auxin efflux carriers OsPINs and OsPGPs. The knockout of OsARF12 also altered the abundance of mitochondrial iron-regulated (OsMIR), iron (Fe)-regulated transporter1 (OsIRT1) and short postembryonic root1 (OsSPR1) in roots of rice, and resulted in lower Fe content. • The data provide evidence for the biological function of OsARF12, which is implicated in regulating root elongation. Our investigation contributes a novel insight for uncovering regulation of RSA and the relationship between auxin response and Fe acquisition.
Collapse
Affiliation(s)
| | | | - ChenJia Shen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - SaiNa Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - YanXia Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - YunRong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - DeAn Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, Zou HF, Lei G, Tian AG, Zhang WK, Ma B, Zhang JS, Chen SY. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:302-13. [PMID: 21707801 DOI: 10.1111/j.1365-313x.2011.04687.x] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
NAC transcription factors play important roles in plant growth, development and stress responses. Previously, we identified multiple NAC genes in soybean (Glycine max). Here, we identify the roles of two genes, GmNAC11 and GmNAC20, in stress responses and other processes. The two genes were differentially induced by multiple abiotic stresses and plant hormones, and their transcripts were abundant in roots and cotyledons. Both genes encoded proteins that localized to the nucleus and bound to the core DNA sequence CGT[G/A]. In the protoplast assay system, GmNAC11 acts as a transcriptional activator, whereas GmNAC20 functions as a mild repressor; however, the C-terminal end of GmANC20 has transcriptional activation activity. Over-expression of GmNAC20 enhances salt and freezing tolerance in transgenic Arabidopsis plants; however, GmNAC11 over-expression only improves salt tolerance. Over-expression of GmNAC20 also promotes lateral root formation. GmNAC20 may regulate stress tolerance through activation of the DREB/CBF-COR pathway, and may control lateral root development by altering auxin signaling-related genes. GmNAC11 probably regulates DREB1A and other stress-related genes. The roles of the two GmNAC genes in stress tolerance were further analyzed in soybean transgenic hairy roots. These results provide a basis for genetic manipulation to improve the agronomic traits of important crops.
Collapse
Affiliation(s)
- Yu-Jun Hao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kuang JF, Zhang Y, Chen JY, Chen QJ, Jiang YM, Lin HT, Xu SJ, Lu WJ. Two GH3 genes from longan are differentially regulated during fruit growth and development. Gene 2011; 485:1-6. [DOI: 10.1016/j.gene.2011.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 05/23/2011] [Accepted: 05/30/2011] [Indexed: 01/08/2023]
|
15
|
Auxin-nonresponsive grape Aux/IAA19 is a positive regulator of plant growth. Mol Biol Rep 2011; 39:911-7. [PMID: 21562765 DOI: 10.1007/s11033-011-0816-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/03/2011] [Indexed: 12/31/2022]
Abstract
We report the characterization of VvIAA19, an auxin/indole-3-acetic acid (Aux/IAA) protein, in grapevine (Vitis vinifera L.). VvIAA19 was expressed abundantly in berries. VvIAA19 transcription was rapidly increased at pre-anthesis and then decreased during fruit set. Before véraison, however, VvIAA19 gene expression was upregulated again and maximum expression was maintained until the end of ripening. Exogenous IAA did not induce VvIAA19 expression in grape leaves, suggesting that VvIAA19 might be auxin-nonresponsive. The overexpression of VvIAA19 in Arabidopsis thaliana had a notable effect on plant growth. Although no morphological changes were observed, transgenic Arabidopsis plants overexpressing VvIAA19 exhibited faster growth, including root elongation and floral transition, than the control plant, suggesting that the constitutive expression of VvIAA19 protein resulted in increased growth rates without any detectable harm. Taken together, we conclude that grape Aux/IAA19 protein is likely to play a crucial role as a plant growth regulator.
Collapse
|
16
|
Liu DJ, Chen JY, Lu WJ. Expression and regulation of the early auxin-responsive Aux/IAA genes during strawberry fruit development. Mol Biol Rep 2010; 38:1187-93. [PMID: 20563652 DOI: 10.1007/s11033-010-0216-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 06/11/2010] [Indexed: 01/29/2023]
Abstract
The plant hormone auxin transcriptionally activates Aux/IAA genes. Auxin plays an important role in regulating fruit growth and ripening of strawberry and Aux/IAA genes have been extensively studied in Arabidopsis, rice and tomato, but little information is available on strawberry fruit. In the present work, two full-length of early auxin-responsive Aux/IAA genes, termed FaAux/IAA1 and FaAux/IAA2 respectively, were isolated and characterized from strawberry fruit. Moreover, the expression profiles of two FaAux/IAA genes during fruit development, and the effect of naphthalene acetic acid (NAA) on their expressions of fruits at two different developmental stages were also investigated. The results showed that the levels of FaAux/IAA1 and FaAux/IAA2 transcripts were very high at early stage of fruit development, and decreased sharply at ripening stage (after white stage). In addition, NAA applied at the stage of large green and white fruit obviously increased the accumulations of FaAux/IAA1 and FaAux/IAA2 transcripts. These data suggested that the expressions of both FaAux/IAA1 and FaAux/IAA2 genes were likely to be involved in early fruit development, and the enhancement of FaAux/IAAs transcripts might be attributed at least or partially to auxin-induced fruit growth and delayed fruit ripening of strawberry.
Collapse
Affiliation(s)
- Du-juan Liu
- Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | | | | |
Collapse
|