1
|
Hao XL, Han F, Zhang N, Chen HQ, Jiang X, Yin L, Liu WB, Wang DD, Chen JP, Cui ZH, Ao L, Cao J, Liu JY. TC2N, a novel oncogene, accelerates tumor progression by suppressing p53 signaling pathway in lung cancer. Cell Death Differ 2018; 26:1235-1250. [PMID: 30254375 PMCID: PMC6748156 DOI: 10.1038/s41418-018-0202-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 08/01/2018] [Accepted: 08/30/2018] [Indexed: 01/09/2023] Open
Abstract
The protein containing the C2 domain has been well documented for its essential roles in endocytosis, cellular metabolism and cancer. Tac2-N (TC2N) is a tandem C2 domain-containing protein, but its function, including its role in tumorigenesis, remains unknown. Here, we first identified TC2N as a novel oncogene in lung cancer. TC2N was preferentially upregulated in lung cancer tissues compared with adjacent normal lung tissues. High TC2N expression was significantly associated with poor outcome of lung cancer patients. Knockdown of TC2N markedly induces cell apoptosis and cell cycle arrest with repressing proliferation in vitro, and suppresses tumorigenicity in vivo, whereas overexpression of TC2N has the opposite effects both in vitro and in vivo. Using a combination of TCGA database and bioinformatics, we demonstrate that TC2N is involved in regulation of the p53 signaling pathway. Mechanistically, TC2N attenuates p53 signaling pathway through inhibiting Cdk5-induced phosphorylation of p53 via inducing Cdk5 degradation or disrupting the interaction between Cdk5 and p53. Moreover, the blockade of p53 attenuates the function of TC2N knockdown in the regulation of cell proliferation and apoptosis. In addition, downregulated TC2N is involved in the apoptosis of lung cancer cells induced by doxorubicin, leading to p53 pathway activation. Overall, these findings uncover a role for the p53 inactivator TC2N in regulating the proliferation and apoptosis of lung cancer cells. Our present study provides novel insights into the mechanism of tumorigenesis in lung cancer.
Collapse
Affiliation(s)
- Xiang-Lin Hao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Ning Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Li Yin
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Dan-Dan Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jian-Ping Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Zhi-Hong Cui
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
2
|
Wang F, Huang W, Hu X, Chen C, Li X, Qiu J, Liang Z, Zhang J, Li L, Wang X, Ding X, Xiang S, Zhang J. Transcription factor AP-2β suppresses cervical cancer cell proliferation by promoting the degradation of its interaction partner β-catenin. Mol Carcinog 2017; 56:1909-1923. [PMID: 28277615 DOI: 10.1002/mc.22646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 12/21/2022]
Abstract
Transcription factor AP-2β mediates the transcription of a number of genes implicated in mammalian development, cell proliferation, and carcinogenesis. Although the expression pattern of AP-2β has been analyzed in cervical cancer cell lines, the functions and molecular mechanism of AP-2β are unknown. Here, we found that AP-2β significantly inhibits TCF/LEF reporter activity. Moreover, AP-2β and β-catenin interact both in vitro through GST pull-down assays and in vivo by co-immunoprecipitation. We further identified the interaction regions to the DNA-binding domain of AP-2β and the 1-9 Armadillo repeats of β-catenin. Moreover, AP-2β binds with β-TrCP and promotes the degradation of endogenous β-catenin via the proteasomal degradation pathway. Immunohistochemistry analysis revealed a negative correlation between the two proteins in cervical cancer tissues and cell lines. Finally, functional analysis showed that AP-2β suppresses cervical cancer cell growth in vitro and in vivo by inhibiting the expression of Wnt downstream genes. Taken together, these findings demonstrated that AP-2β functions as a novel inhibitor of the Wnt/β-catenin signaling pathway in cervical cancer.
Collapse
Affiliation(s)
- Fangmei Wang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Wenhuan Huang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Cheng Chen
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Xinxin Li
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Junlu Qiu
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Zhongheng Liang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Jianmei Zhang
- Reproductive Medicine Center, Changsha Hospital for Maternal & Child Health Care, Changsha, Hunan, China
| | - Limin Li
- College of Engineering and Design, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoqing Wang
- Xiangya Second Hospital, Central South University, Changsha, Hunan, China
| | - Xiaofeng Ding
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| | - Jian Zhang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Changsha, Hunan, China
| |
Collapse
|
3
|
Liu S, Yan B, Lai W, Chen L, Xiao D, Xi S, Jiang Y, Dong X, An J, Chen X, Cao Y, Tao Y. As a novel p53 direct target, bidirectional gene HspB2/αB-crystallin regulates the ROS level and Warburg effect. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:592-603. [PMID: 24859470 DOI: 10.1016/j.bbagrm.2014.05.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 02/02/2023]
Abstract
Many mammalian genes are composed of bidirectional gene pairs with the two genes separated by less than 1.0kb. The transcriptional regulation and function of these bidirectional genes remain largely unclear. Here, we report that bidirectional gene pair HspB2/αB-crystallin, both of which are members of the small heat shock protein gene family, is a novel direct target gene of p53. Two potential binding sites of p53 are present in the intergenic region of HspB2/αB-crystallin. p53 up-regulated the bidirectional promoter activities of HspB2/αB-crystallin. Actinomycin D (ActD), an activator of p53, induces the promoter and protein activities of HspB2/αB-crystallin. p53 binds to two p53 binding sites in the intergenic region of HspB2/αB-crystallin in vitro and in vivo. Moreover, the products of bidirectional gene pair HspB2/αB-crystallin regulate glucose metabolism, intracellular reactive oxygen species (ROS) level and the Warburg effect by affecting metabolic genes, including the synthesis of cytochrome c oxidase 2 (SCO2), hexokinase II (HK2), and TP53-induced glycolysis and apoptosis regulator (TIGAR). The ROS level and the Warburg effect are affected after the depletion of p53, HspB2 and αB-crystallin respectively. Finally, we show that both HspB2 and αB-crystallin are linked with human renal carcinogenesis. These findings provide novel insights into the role of p53 as a regulator of bidirectional gene pair HspB2/αB-crystallin-mediated ROS and the Warburg effect.
Collapse
Affiliation(s)
- Shuang Liu
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Cancer Research Institute, Central South University, Changsha, Hunan 410078, China; Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bin Yan
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China; Center for Molecular Imaging, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan 410078, China; Key Laboratory of Carcinogenesis, Ministry of Health, Hunan 410078, China
| | - Weiwei Lai
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China; Center for Molecular Imaging, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan 410078, China; Key Laboratory of Carcinogenesis, Ministry of Health, Hunan 410078, China
| | - Ling Chen
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China; Center for Molecular Imaging, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan 410078, China; Key Laboratory of Carcinogenesis, Ministry of Health, Hunan 410078, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Sichuan Xi
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892 USA
| | - Yiqun Jiang
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China; Center for Molecular Imaging, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan 410078, China; Key Laboratory of Carcinogenesis, Ministry of Health, Hunan 410078, China
| | - Xin Dong
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China; Center for Molecular Imaging, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan 410078, China; Key Laboratory of Carcinogenesis, Ministry of Health, Hunan 410078, China
| | - Jing An
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 4010078, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ya Cao
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China; Center for Molecular Imaging, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan 410078, China; Key Laboratory of Carcinogenesis, Ministry of Health, Hunan 410078, China
| | - Yongguang Tao
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China; Center for Molecular Imaging, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan 410078, China; Key Laboratory of Carcinogenesis, Ministry of Health, Hunan 410078, China.
| |
Collapse
|
4
|
Li X, Chen C, Wang F, Huang W, Liang Z, Xiao Y, Wei K, Wan Z, Hu X, Xiang S, Ding X, Zhang J. KCTD1 suppresses canonical Wnt signaling pathway by enhancing β-catenin degradation. PLoS One 2014; 9:e94343. [PMID: 24736394 PMCID: PMC3988066 DOI: 10.1371/journal.pone.0094343] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/12/2014] [Indexed: 11/18/2022] Open
Abstract
The canonical Wnt signaling pathway controls normal embryonic development, cellular proliferation and growth, and its aberrant activity results in human carcinogenesis. The core component in regulation of this pathway is β-catenin, but molecular regulation mechanisms of β-catenin stability are not completely known. Here, our recent studies have shown that KCTD1 strongly inhibits TCF/LEF reporter activity. Moreover, KCTD1 interacted with β-catenin both in vivo by co-immunoprecipitation as well as in vitro through GST pull-down assays. We further mapped the interaction regions to the 1-9 armadillo repeats of β-catenin and the BTB domain of KCTD1, especially Position Ala-30 and His-33. Immunofluorescence analysis indicated that KCTD1 promotes the cytoplasmic accumulation of β-catenin. Furthermore, protein stability assays revealed that KCTD1 enhances the ubiquitination/degradation of β-catenin in a concentration-dependent manner in HeLa cells. And the degradation of β-catenin mediated by KCTD1 was alleviated by the proteasome inhibitor, MG132. In addition, KCTD1-mediated β-catenin degradation was dependent on casein kinase 1 (CK1)- and glycogen synthase kinase-3β (GSK-3β)-mediated phosphorylation and enhanced by the E3 ubiquitin ligase β-transducin repeat-containing protein (β-TrCP). Moreover, KCTD1 suppressed the expression of endogenous Wnt downstream genes and transcription factor AP-2α. Finally, we found that Wnt pathway member APC and tumor suppressor p53 influence KCTD1-mediated downregulation of β-catenin. These results suggest that KCTD1 functions as a novel inhibitor of Wnt signaling pathway.
Collapse
Affiliation(s)
- Xinxin Li
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | - Cheng Chen
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | - Fangmei Wang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | - Wenhuan Huang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | - Zhongheng Liang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | - Yuzhong Xiao
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | - Ke Wei
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | - Zhenxing Wan
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | - Xiaofeng Ding
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
- * E-mail:
| | - Jian Zhang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
5
|
Wu Y, Xiao Y, Ding X, Zhuo Y, Ren P, Zhou C, Zhou J. A miR-200b/200c/429-binding site polymorphism in the 3' untranslated region of the AP-2α gene is associated with cisplatin resistance. PLoS One 2011; 6:e29043. [PMID: 22194984 PMCID: PMC3237583 DOI: 10.1371/journal.pone.0029043] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 11/18/2011] [Indexed: 01/13/2023] Open
Abstract
The transcription factor AP-2α functions as a tumor suppressor by regulating various genes that are involved in cell proliferation and apoptosis. Chemotherapeutic drugs including cisplatin induce post-transcriptionally endogenous AP-2α, which contributes to chemosensitivity by enhancing therapy-induced apoptosis. microRNAs (miRNAs) miR-200b, miR-200c and miR-429 (miR-200b/200c/429) are up-regulated in endometrial and esophageal cancers, and their overexpression correlates with resistance to cisplatin treatment. Using computational programs, we predicted that the 3′ untranslated region (UTR) of AP-2α gene contains a potential miRNA response element (MRE) for the miR-200b/200c/429 family, and the single nucleotide polymorphism (SNP) site rs1045385 (A or C allele) resided within the predicted MRE. Luciferase assays and Western blot analysis demonstrated that the miR-200b/200c/429 family recognized the MRE in the 3′ UTR of AP-2α gene and negatively regulated the expression of endogenous AP-2α proteins. SNP rs1045385 A>C variation enhanced AP-2α expression by disrupting the binding of the miR-200b/200c/429 family to the 3′ UTR of AP-2α. The effects of the two polymorphic variants on cisplatin sensitivity were determined by clonogenic assay. The overexpression of AP-2α with mutant 3′ UTR (C allele) in the endometrial cancer cell line HEC-1A, which has high levels of endogenous miR-200b/200c/429 and low levels of AP-2α protein, significantly increased cisplatin sensitivity, but overexpression of A allele of AP-2α has no significant effects, compared with mock transfection. We concluded that miR-200b/200c/429 induced cisplatin resistance by repressing AP-2α expression in endometrial cancer cells. The SNP (rs1045385) A>C variation decreased the binding of miR-200b/200c/429 to the 3′ UTR of AP-2α, which upregulated AP-2α protein expression and increased cisplatin sensitivity. Our results suggest that SNP (rs1045385) may be a potential prognostic marker for cisplatin treatment.
Collapse
Affiliation(s)
- Yuan Wu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Science, Hunan Normal University, Changsha, China
| | - Yuzhong Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Science, Hunan Normal University, Changsha, China
| | - Xiaofeng Ding
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Science, Hunan Normal University, Changsha, China
| | - Yiming Zhuo
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Science, Hunan Normal University, Changsha, China
| | - Peng Ren
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Science, Hunan Normal University, Changsha, China
| | - Chang Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Science, Hunan Normal University, Changsha, China
- * E-mail: (JZ); (CZ)
| | - Jianlin Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Science, Hunan Normal University, Changsha, China
- * E-mail: (JZ); (CZ)
| |
Collapse
|