1
|
Lee CE, Charmantier G, Lorin-Nebel C. Mechanisms of Na + uptake from freshwater habitats in animals. Front Physiol 2022; 13:1006113. [PMID: 36388090 PMCID: PMC9644288 DOI: 10.3389/fphys.2022.1006113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 07/20/2023] Open
Abstract
Life in fresh water is osmotically and energetically challenging for living organisms, requiring increases in ion uptake from dilute environments. However, mechanisms of ion uptake from freshwater environments are still poorly understood and controversial, especially in arthropods, for which several hypothetical models have been proposed based on incomplete data. One compelling model involves the proton pump V-type H+ ATPase (VHA), which energizes the apical membrane, enabling the uptake of Na+ (and other cations) via an unknown Na+ transporter (referred to as the "Wieczorek Exchanger" in insects). What evidence exists for this model of ion uptake and what is this mystery exchanger or channel that cooperates with VHA? We present results from studies that explore this question in crustaceans, insects, and teleost fish. We argue that the Na+/H+ antiporter (NHA) is a likely candidate for the Wieczorek Exchanger in many crustaceans and insects; although, there is no evidence that this is the case for fish. NHA was discovered relatively recently in animals and its functions have not been well characterized. Teleost fish exhibit redundancy of Na+ uptake pathways at the gill level, performed by different ion transporter paralogs in diverse cell types, apparently enabling tolerance of low environmental salinity and various pH levels. We argue that much more research is needed on overall mechanisms of ion uptake from freshwater habitats, especially on NHA and other potential Wieczorek Exchangers. Such insights gained would contribute greatly to our general understanding of ionic regulation in diverse species across habitats.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, WI, United States
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guy Charmantier
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | |
Collapse
|
2
|
A hemipteran insect reveals new genetic mechanisms and evolutionary insights into tracheal system development. Proc Natl Acad Sci U S A 2020; 117:4252-4261. [PMID: 32041884 DOI: 10.1073/pnas.1908975117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The diversity in the organization of the tracheal system is one of the drivers of insect evolutionary success; however, the genetic mechanisms responsible are yet to be elucidated. Here, we highlight the advantages of utilizing hemimetabolous insects, such as the milkweed bug Oncopeltus fasciatus, in which the final adult tracheal patterning can be directly inferred by examining its blueprint in embryos. By reporting the expression patterns, functions, and Hox gene regulation of trachealess (trh), ventral veinless (vvl), and cut (ct), key genes involved in tracheal development, this study provides important insights. First, Hox genes function as activators, modifiers, and suppressors of trh expression, which in turn results in a difference between the thoracic and abdominal tracheal organization. Second, spiracle morphogenesis requires the input of both trh and ct, where ct is positively regulated by trh As Hox genes regulate trh, we can now mechanistically explain the previous observations of their effects on spiracle formation. Third, the default state of vvl expression in the thorax, in the absence of Hox gene expression, features three lateral cell clusters connected to ducts. Fourth, the exocrine scent glands express vvl and are regulated by Hox genes. These results extend previous findings [Sánchez-Higueras et al., 2014], suggesting that the exocrine glands, similar to the endocrine, develop from the same primordia that give rise to the trachea. The presence of such versatile primordia in the miracrustacean ancestor could account for the similar gene networks found in the glandular and respiratory organs of both insects and crustaceans.
Collapse
|
3
|
Lavore A, Pascual A, Salinas FM, Esponda-Behrens N, Martinez-Barnetche J, Rodriguez M, Rivera-Pomar R. Comparative analysis of zygotic developmental genes in Rhodnius prolixus genome shows conserved features on the tracheal developmental pathway. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 64:32-43. [PMID: 26187251 DOI: 10.1016/j.ibmb.2015.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 06/13/2015] [Accepted: 06/21/2015] [Indexed: 06/04/2023]
Abstract
Most of the in-depth studies on insect developmental genetic have been carried out in the fruit fly Drosophila melanogaster, an holometabolous insect, so much more still remains to be studied in hemimetabolous insects. Having Rhodnius prolixus sequenced genome available, we search for orthologue genes of zygotic signaling pathways, segmentation, and tracheogenesis in the R. prolixus genome and in three species of Triatoma genus transcriptomes, concluding that there is a high level of gene conservation. We also study the function of two genes required for tracheal system development in D. melanogaster - R. prolixus orthologues: trachealess (Rp-trh) and empty spiracles (Rp-ems). From that we see that Rp-trh is required for early tracheal development since Rp-trh RNAi shows that the primary tracheal branches fail to form. On the other hand, Rp-ems is implied in the proper formation of the posterior tracheal branches, in a similar way to D. melanogaster. These results represent the initial characterization of the genes involved in the tracheal development of an hemimetabolous insect building a bridge between the current genomic era and V. Wigglesworth's classical studies on insects' respiratory system physiology.
Collapse
Affiliation(s)
- A Lavore
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina.
| | - A Pascual
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina; Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62, La Plata, Buenos Aires, Argentina.
| | - F M Salinas
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina.
| | - N Esponda-Behrens
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62, La Plata, Buenos Aires, Argentina.
| | - J Martinez-Barnetche
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Sta. María Ahuacatitlán, Cuernavaca, Mexico.
| | - M Rodriguez
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Sta. María Ahuacatitlán, Cuernavaca, Mexico.
| | - R Rivera-Pomar
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina; Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Zhang Q, Hou M, Li Q, Han L, Yuan Z, Tan J, Du B, Zou X, Hou L. Expression patterns of As-ClC gene of Artemia sinica in early development and under salinity stress. Mol Biol Rep 2013; 40:3655-64. [PMID: 23277400 DOI: 10.1007/s11033-012-2441-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/18/2012] [Indexed: 01/05/2023]
Abstract
As-ClC (chloride channels protein from Artemia sinica), a member from the chloride channels protein family, is a α-helical membrane protein predicted to traverse the cell membrane 11 times. It is important for several physiological functions such as cell volume regulation, cell proliferation, growth and differentiation. In this paper, the complete cDNA sequence of As-CIC was cloned from A. sinica for the first time using RACE technology. The expression pattern and location of the As-CIC gene was investigated in different stages of the embryonic development by means of quantitative real-time PCR and in situ hybridization (ISH) assay. As-CLC was distributed throughout the whole body in cells of different embryonic development of A. sinica as shown by ISH. There was a low expression level of the As-ClC gene after 0 h and a higher expression level after 15 and 40 h when the embryo entered the next growth period and the environmental salinity changed. At adult stage, the As-ClC maintained a high expression level. The results of the real-time PCR assay showed an increasing trend of As-ClC transcripts with increasing salinity. The expression of As-ClC was higher in the control group (28) than in the experimental group except at a salinity of 200 PSU. It indicated that As-ClC functions as salinity-stress-related gene, probably participated in cell volume regulation and osmotic regulation during the early embryonic development of A. sinica.
Collapse
Affiliation(s)
- Qiaozhi Zhang
- College of Life Sciences, Liaoning Normal University, Dalian 116029, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|