1
|
Madasu C, Liao Z, Parks SE, Sharma KL, Bohren KM, Ye Q, Li F, Palaniappan M, Tan Z, Yuan F, Creighton CJ, Tang S, Masand RP, Guan X, Young DW, Monsivais D, Matzuk MM. Identification of potent pan-ephrin receptor kinase inhibitors using DNA-encoded chemistry technology. Proc Natl Acad Sci U S A 2024; 121:e2322934121. [PMID: 38701119 PMCID: PMC11087803 DOI: 10.1073/pnas.2322934121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/22/2024] [Indexed: 05/05/2024] Open
Abstract
EPH receptors (EPHs), the largest family of tyrosine kinases, phosphorylate downstream substrates upon binding of ephrin cell surface-associated ligands. In a large cohort of endometriotic lesions from individuals with endometriosis, we found that EPHA2 and EPHA4 expressions are increased in endometriotic lesions relative to normal eutopic endometrium. Because signaling through EPHs is associated with increased cell migration and invasion, we hypothesized that chemical inhibition of EPHA2/4 could have therapeutic value. We screened DNA-encoded chemical libraries (DECL) to rapidly identify EPHA2/4 kinase inhibitors. Hit compound, CDD-2693, exhibited picomolar/nanomolar kinase activity against EPHA2 (Ki: 4.0 nM) and EPHA4 (Ki: 0.81 nM). Kinome profiling revealed that CDD-2693 bound to most EPH family and SRC family kinases. Using NanoBRET target engagement assays, CDD-2693 had nanomolar activity versus EPHA2 (IC50: 461 nM) and EPHA4 (IC50: 40 nM) but was a micromolar inhibitor of SRC, YES, and FGR. Chemical optimization produced CDD-3167, having picomolar biochemical activity toward EPHA2 (Ki: 0.13 nM) and EPHA4 (Ki: 0.38 nM) with excellent cell-based potency EPHA2 (IC50: 8.0 nM) and EPHA4 (IC50: 2.3 nM). Moreover, CDD-3167 maintained superior off-target cellular selectivity. In 12Z endometriotic epithelial cells, CDD-2693 and CDD-3167 significantly decreased EFNA5 (ligand) induced phosphorylation of EPHA2/4, decreased 12Z cell viability, and decreased IL-1β-mediated expression of prostaglandin synthase 2 (PTGS2). CDD-2693 and CDD-3167 decreased expansion of primary endometrial epithelial organoids from patients with endometriosis and decreased Ewing's sarcoma viability. Thus, using DECL, we identified potent pan-EPH inhibitors that show specificity and activity in cellular models of endometriosis and cancer.
Collapse
Affiliation(s)
- Chandrashekhar Madasu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Zian Liao
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Sydney E. Parks
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Kiran L. Sharma
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Kurt M. Bohren
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Qiuji Ye
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Murugesan Palaniappan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Zhi Tan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Fei Yuan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Chad J. Creighton
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX77030
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX77030
- Department of Medicine, Baylor College of Medicine, Houston, TX77030
| | - Suni Tang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Ramya P. Masand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX77030
| | - Xiaoming Guan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX77030
| | - Damian W. Young
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Martin M. Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
2
|
Does the Act of Copulation per se, without Considering Seminal Deposition, Change the Expression of Genes in the Porcine Female Genital Tract? Int J Mol Sci 2020; 21:ijms21155477. [PMID: 32751869 PMCID: PMC7432858 DOI: 10.3390/ijms21155477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Semen—through its specific sperm and seminal plasma (SP) constituents—induces changes of gene expression in the internal genital tract of pigs, particularly in the functional sperm reservoir at the utero-tubal junction (UTJ). Although seminal effects are similarly elicited by artificial insemination (AI), major changes in gene expression are registered after natural mating, a fact suggesting the act of copulation induces per se changes in genes that AI does not affect. The present study explored which pathways were solely influenced by copulation, affecting the differential expression of genes (DEGs) of the pre/peri-ovulatory genital tract (cervix, distal uterus, proximal uterus and UTJ) of estrus sows, 24 h after various procedures were performed to compare natural mating with AI of semen (control 1), sperm-free SP harvested from the sperm-peak fraction (control 2), sperm-free SP harvested from the whole ejaculate (control 3) or saline-extender BTS (control 4), using a microarray chip (GeneChip® porcine gene 1.0 st array). Genes related to neuroendocrine responses (ADRA1, ADRA2, GABRB2, CACNB2), smooth muscle contractility (WNT7A), angiogenesis and vascular remodeling (poFUT1, NTN4) were, among others, overrepresented with distal and proximal uterine segments exhibiting the highest number of DEGs. The findings provide novel evidence that relevant transcriptomic changes in the porcine female reproductive tract occur in direct response to the specific act of copulation, being semen-independent.
Collapse
|
3
|
Fujiwara H, Ono M, Sato Y, Imakawa K, Iizuka T, Kagami K, Fujiwara T, Horie A, Tani H, Hattori A, Daikoku T, Araki Y. Promoting Roles of Embryonic Signals in Embryo Implantation and Placentation in Cooperation with Endocrine and Immune Systems. Int J Mol Sci 2020; 21:ijms21051885. [PMID: 32164226 PMCID: PMC7084435 DOI: 10.3390/ijms21051885] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Embryo implantation in the uterus is an essential process for successful pregnancy in mammals. In general, the endocrine system induces sufficient embryo receptivity in the endometrium, where adhesion-promoting molecules increase and adhesion-inhibitory molecules decrease. Although the precise mechanisms remain unknown, it is widely accepted that maternal–embryo communications, including embryonic signals, improve the receptive ability of the sex steroid hormone-primed endometrium. The embryo may utilize repulsive forces produced by an Eph–ephrin system for its timely attachment to and subsequent invasion through the endometrial epithelial layer. Importantly, the embryonic signals are considered to act on maternal immune cells to induce immune tolerance. They also elicit local inflammation that promotes endometrial differentiation and maternal tissue remodeling during embryo implantation and placentation. Additional clarification of the immune control mechanisms by embryonic signals, such as human chorionic gonadotropin, pre-implantation factor, zona pellucida degradation products, and laeverin, will aid in the further development of immunotherapy to minimize implantation failure in the future.
Collapse
Affiliation(s)
- Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; (M.O.); (T.I.); (K.K.)
- Correspondence: or ; Tel.: +81-(0)76-265-2425; Fax: +81-(0)76-234-4266
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; (M.O.); (T.I.); (K.K.)
| | - Yukiyasu Sato
- Department of Obstetrics and Gynecology, Takamatsu Red Cross Hospital, Takamatsu 760-0017, Japan;
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto 862-8652, Japan;
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; (M.O.); (T.I.); (K.K.)
| | - Kyosuke Kagami
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; (M.O.); (T.I.); (K.K.)
| | - Tomoko Fujiwara
- Department of Home Science and Welfare, Kyoto Notre Dame University, Kyoto 606-0847, Japan;
| | - Akihito Horie
- Department of Obstetrics and Gynecology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (A.H.); (H.T.)
| | - Hirohiko Tani
- Department of Obstetrics and Gynecology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (A.H.); (H.T.)
| | - Akira Hattori
- Department of System Chemotherapy and Molecular Sciences, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501, Japan;
| | - Takiko Daikoku
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa 920-8640, Japan;
| | - Yoshihiko Araki
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu 279-0021, Japan;
- Department of Obstetrics and Gynecology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
4
|
Park H, Lim W, You S, Song G. Oxibendazole induces apoptotic cell death in proliferating porcine trophectoderm and uterine luminal epithelial cells via mitochondria-mediated calcium disruption and breakdown of mitochondrial membrane potential. Comp Biochem Physiol C Toxicol Pharmacol 2019; 220:9-19. [PMID: 30822534 DOI: 10.1016/j.cbpc.2019.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
The well-known and effective anthelmintic oxibendazole was recently shown to have a broad spectrum of biological abilities, such as anti-cancer and anti-inflammation activities. In contrast, the mechanism of oxibendazole's anti-proliferative effect via cell signaling pathways and its role in pre-implantation has not been studied. Therefore, in this study we demonstrated the effects of oxibendazole on the proliferation of porcine trophectoderm (pTr) cells and porcine luminal epithelial (pLE) cells, a well-known in vitro model system of the fetal-maternal interface. Cell proliferation decreased in both pTr and pLE cells in response to oxibendazole, and we determined that this was modulated through intracellular cell signal transduction. Phosphorylation of ERK1/2, P90RSK, and S6 were downregulated by exposure to a 200 nM dose of oxibendazole in both types of cells, while the expression of phosphorylated JNK, AKT, and P70S6K was upregulated. Pre-treatment with a PI3K/AKT inhibitor (Wortmannin), ERK1/2 inhibitor (U0126), and JNK inhibitor (SP600125) induced the signaling interactions of these molecules, and oxibendazole co-treatment with each inhibitor resulted in even greater decreases in cell proliferation. Furthermore, intracellular and mitochondrial calcium ion accumulation was observed, which would mean that calcium ion homeostasis was disrupted, causing damage to the mitochondrial membrane potential. These deteriorated conditions ultimately led to apoptotic cell death. Taken together, the results of the present study identified that the apoptotic effect of oxibendazole on pTr and pLE cells is regulated by cell signaling pathways, and thus oxibendazole could influence the connection between the conceptus and the maternal uterus.
Collapse
Affiliation(s)
- Hahyun Park
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea
| | - Seungkwon You
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Gwonhwa Song
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
5
|
Christou-Kent M, Kherraf ZE, Amiri-Yekta A, Le Blévec E, Karaouzène T, Conne B, Escoffier J, Assou S, Guttin A, Lambert E, Martinez G, Boguenet M, Fourati Ben Mustapha S, Cedrin Durnerin I, Halouani L, Marrakchi O, Makni M, Latrous H, Kharouf M, Coutton C, Thierry-Mieg N, Nef S, Bottari SP, Zouari R, Issartel JP, Ray PF, Arnoult C. PATL2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice. EMBO Mol Med 2019; 10:emmm.201708515. [PMID: 29661911 PMCID: PMC5938616 DOI: 10.15252/emmm.201708515] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The genetic causes of oocyte meiotic deficiency (OMD), a form of primary infertility characterised by the production of immature oocytes, remain largely unexplored. Using whole exome sequencing, we found that 26% of a cohort of 23 subjects with OMD harboured the same homozygous nonsense pathogenic mutation in PATL2, a gene encoding a putative RNA‐binding protein. Using Patl2 knockout mice, we confirmed that PATL2 deficiency disturbs oocyte maturation, since oocytes and zygotes exhibit morphological and developmental defects, respectively. PATL2's amphibian orthologue is involved in the regulation of oocyte mRNA as a partner of CPEB. However, Patl2's expression profile throughout oocyte development in mice, alongside colocalisation experiments with Cpeb1, Msy2 and Ddx6 (three oocyte RNA regulators) suggest an original role for Patl2 in mammals. Accordingly, transcriptomic analysis of oocytes from WT and Patl2−/− animals demonstrated that in the absence of Patl2, expression levels of a select number of highly relevant genes involved in oocyte maturation and early embryonic development are deregulated. In conclusion, PATL2 is a novel actor of mammalian oocyte maturation whose invalidation causes OMD in humans.
Collapse
Affiliation(s)
- Marie Christou-Kent
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Zine-Eddine Kherraf
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Amir Amiri-Yekta
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Emilie Le Blévec
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Thomas Karaouzène
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Béatrice Conne
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Jessica Escoffier
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Said Assou
- IRMB, INSERM U1183, CHRU Montpellier, Université Montpellier, Montpellier, France
| | - Audrey Guttin
- Grenoble Neuroscience Institute, INSERM 1216, Université Grenoble Alpes, Grenoble, France
| | - Emeline Lambert
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Guillaume Martinez
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France.,UM de Génétique Chromosomique, CHU de Grenoble, Grenoble, France
| | - Magalie Boguenet
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | | | - Isabelle Cedrin Durnerin
- Service de Médecine de la Reproduction, Centre Hospitalier Universitaire Jean Verdier, Assistance Publique - Hôpitaux de Paris, Bondy, France
| | - Lazhar Halouani
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Ouafi Marrakchi
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Mounir Makni
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Habib Latrous
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Mahmoud Kharouf
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Charles Coutton
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France.,UM de Génétique Chromosomique, CHU de Grenoble, Grenoble, France
| | | | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Serge P Bottari
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, Tunis, Tunisia
| | - Jean Paul Issartel
- Grenoble Neuroscience Institute, INSERM 1216, Université Grenoble Alpes, Grenoble, France
| | - Pierre F Ray
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.,UM GI-DPI, CHU de Grenoble, Grenoble, France
| | - Christophe Arnoult
- Genetics, Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
6
|
Fu Y, Li L, Fang X, Li B, Zhao W, Zhou L, Ren S. Investigation of Eph‐ephrin A1 in the regulation of embryo implantation in sows. Reprod Domest Anim 2018; 53:1563-1574. [DOI: 10.1111/rda.13308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Yanfeng Fu
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform Jiangsu Academy of Agricultural Sciences Nanjing China
- Key Laboratory of Crop and Livestock Integrated FarmingMinistry of Agriculture and Rural Affairs Nanjing China
| | - Lan Li
- Institute of Animal Immune Engineering Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Xiaomin Fang
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform Jiangsu Academy of Agricultural Sciences Nanjing China
- Key Laboratory of Crop and Livestock Integrated FarmingMinistry of Agriculture and Rural Affairs Nanjing China
| | - Bixia Li
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Weimin Zhao
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Lisheng Zhou
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Shouwen Ren
- Institute of Animal Science/Key Laboratory of Animal Breed Improvement and reproduction/Jiangsu Germplasm Resources Protection and Utilization Platform Jiangsu Academy of Agricultural Sciences Nanjing China
| |
Collapse
|
7
|
Lim W, Bae H, Bazer FW, Song G. Ephrin A1 promotes proliferation of bovine endometrial cells with abundant expression of proliferating cell nuclear antigen and cyclin D1 changing the cell population at each stage of the cell cycle. J Cell Physiol 2018; 234:4864-4873. [PMID: 30238980 DOI: 10.1002/jcp.27275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 07/27/2018] [Indexed: 12/22/2022]
Abstract
Ephrin A1 has a role in a variety of biological events, including cell proliferation, differentiation, migration, and angiogenesis. Ephrin A1 expression is abundant in trophoblasts and endometrial cells during the implantation period; however, its intracellular activities have not yet been reported in bovine endometrial (BEND) epithelial cells. The aim of this study was to identify the functional role of ephrin A1 in BEND cells, which have served as a good model system for investigating the regulation of signal transduction following treatment with interferon-τ (IFNT) in vitro. Supplementation of ephrin A1 to BEND cells increased cell proliferation and increased levels of proliferating cell nuclear antigen and cyclin D1 protein in BEND cell nuclei. To investigate intracellular mechanisms regulated by ephrin A1, we performed Western blot analysis focused on mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling, which are significantly involved in the successful maintenance of pregnancy. Ephrin A1 dose-dependently increased phosphorylation of extracellular signal-regulated kinases (ERK)1/2, c-Jun N-terminal kinases (JNK), P38, protein kinase B (AKT), P70S6K, S6, and cyclin D1, and the activated proteins were suppressed by pharmacological inhibitors including wortmannin (a PI3K inhibitor), U0126 (an ERK1/2 inhibitor), and SP600125 (a JNK inhibitor). Among ephrin A1 receptors, abundant expression of EPHA2 and EPHA4 messenger RNA was detected in BEND cells by reverse transcription polymerase chain reaction analysis. Furthermore, tunicamycin-induced endoplasmic reticulum (ER) stress was inactivated by ephrin A1 treatment of BEND cells. Our findings suggest that ephrin A1 promotes the development of BEND cells and likely enhances uterine capacity and maintenance of pregnancy by activating MAPK and PI3K signaling cascades and by restoring ER stress.
Collapse
Affiliation(s)
- Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, Korea
| | - Hyocheol Bae
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Fuller W Bazer
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
| | - Gwonhwa Song
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| |
Collapse
|
8
|
Fu Y, Knox RV, Li L, Ren S. Differential gene expression of Eph-ephrin A1 and LEPR-LEP with high or low number of embryos in pigs during implantation. Reprod Domest Anim 2018; 53:937-946. [PMID: 29740882 DOI: 10.1111/rda.13192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/22/2018] [Indexed: 12/26/2022]
Abstract
The objective of this study was to ascertain whether mRNA and protein expressions of implantation-related genes (erythropoietin-producing hepatocellular receptor-ligand A1, Eph-ephrin A1 and leptin receptor-leptin, LEPR-LEP) differed between pigs with high and low number of embryos, and whether these differences in gene expression might affect embryo implantation. Experimental pig groups (n = 24) for high and low number of embryos were prepared by altering the number of eggs ovulated in pre-pubertal gilts treated with 1.5 × (High) or 1.0 × (Low) PG600 ([400 IU PMSG + 200 IU hCG]/dose, AKZO-NOBEL). Gilts expressing oestrus were artificially inseminated twice and maintained in breeding and gestation until the reproductive tract was collected on day 22 of pregnancy. At slaughter, the reproductive tracts from each pregnant gilt from each treatment were immediately processed to collect samples for RNA and protein analysis. Within each gilt, three conceptus points were sampled, one from each horn and then a random conceptus within the tract. At each conceptus point, endometrial attachment site, chorion-allantois and embryo were collected and immediately frozen in liquid nitrogen. Number of corpus luteum (CL) (35.4 vs. 12.6) and total embryo number (18.8 vs. 10.2) were greater in the high-embryo compared to the low-embryo group, respectively (p < .05). Real-time qPCR results showed that Eph-ephrin A1 mRNA expression was less in the high-embryo (p < .05) compared to the low-embryo group. In addition, Western blotting analysis indicated that Eph-ephrin A1 and LEP protein expression at endometrial attachment site in high-embryo was less (p < .05) compared to low-embryo group. It was also noted that mRNA expression of Eph-ephrin A1 and LEPR-LEP was greater in pregnant than non-pregnant gilts (p < .05). Moreover, mRNA expression of Eph-ephrin A1 (p < .05) and LEPR-LEP was greatest at endometrial attachment site among all three tissues. There was a positive correlation between expressions of Eph-ephrin A1, LEPR-LEP and embryo length with the correlation coefficient 0.31-0.59. For Eph-ephrin A1, the highest correlation coefficient appeared between Eph A1 expression and normal embryo number, between ephrin A1 expression and embryo length. For LEPR-LEP, the highest correlation coefficient appeared between LEPR-LEP expression and ovary weight (0.79 for both, p < .05), followed by embryo length and weight. The results of this study suggest that low expression of Eph-ephrin A1 and LEPR-LEP is somehow related to increased embryo number during implantation and that endometrial attachment site might be the main target tissue of these gene products. Yet, the increased expression of Eph-ephrin A1 and LEPR-LEP appeared associated with increased embryo growth (length and weight) and ovary weight, Eph-ephrin A1 and LEPR-LEP might play roles in the regulation of embryo implantation in pigs.
Collapse
Affiliation(s)
- Y Fu
- Institute of Animal Science/The Key Laboratory of Animal Breed Improvement and reproduction, Jiangsu Academy of Agricultural Sciences/Planting and Breeding Key Laboratory of National Ministry of Agriculture, Nanjing, Jiangsu, China.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - R V Knox
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - L Li
- Institute of Animal Immune Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - S Ren
- Institute of Animal Science/The Key Laboratory of Animal Breed Improvement and reproduction, Jiangsu Academy of Agricultural Sciences/Planting and Breeding Key Laboratory of National Ministry of Agriculture, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Lim W, Bae H, Bazer FW, Song G. Functional Roles of Eph A-Ephrin A1 System in Endometrial Luminal Epithelial Cells During Early Pregnancy. J Cell Physiol 2016; 232:1527-1538. [DOI: 10.1002/jcp.25659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/20/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Whasun Lim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology; College of Life Sciences and Biotechnology; Korea University; Seoul Republic of Korea
| | - Hyocheol Bae
- Institute of Animal Molecular Biotechnology and Department of Biotechnology; College of Life Sciences and Biotechnology; Korea University; Seoul Republic of Korea
| | - Fuller W. Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science; Texas A&M University; College Station Texas
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology; College of Life Sciences and Biotechnology; Korea University; Seoul Republic of Korea
| |
Collapse
|
10
|
Fu Y, Li L, Li B, Fang X, Ren S. Long form leptin receptor and SNP effect on reproductive traits during embryo attachment in Suzhong sows. Anim Reprod Sci 2016; 168:57-65. [DOI: 10.1016/j.anireprosci.2016.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 12/23/2022]
|
11
|
Rego J, Moura A, Nouwens A, McGowan M, Boe-Hansen G. Seminal plasma protein profiles of ejaculates obtained by internal artificial vagina and electroejaculation in Brahman bulls. Anim Reprod Sci 2015; 160:126-37. [DOI: 10.1016/j.anireprosci.2015.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 07/26/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022]
|
12
|
Fu Y, Li L, Ren S. Effect of FTO Expression and Polymorphism on Fat Deposition in Suzhong Pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:1365-73. [PMID: 25049719 PMCID: PMC4093081 DOI: 10.5713/ajas.2013.13055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/26/2013] [Accepted: 04/09/2013] [Indexed: 11/27/2022]
Abstract
Fat mass and obesity associated gene (FTO) plays an important role in appetite control and energy consumption in human and mice. In order to examine FTO expression influence on fat deposition in Suzhong pigs, FTO mRNA expression was detected in 16 tissues by RT-PCR, FTO protein expression was detected in 5 tissues by western blot, and association of FTO polymorphism with meat quality traits was analyzed in Suzhong populations with 714 records. RT-PCR results revealed that FTO mRNA was expressed in all sixteen tissues with significant differences (p<0.05), expression in backfat was significantly higher than that of any other tissue (p<0.05), and expression in longissimus dorsi muscle had the second highest significance level (p<0.05). Western blot results demonstrated that FTO protein was highly expressed in backfat and longissimus dorsi muscle. Furthermore, FTO mRNA and protein expression in tissues of high-fat pigs was significantly higher than that of low-fat pigs (p<0.05), suggesting FTO expression had advantageous effects on fat deposition. FTO polymorphism results evidenced that at A227G locus, G allele seemed to have advantageous effects on fat deposition, indicating it could be a significant candidate gene for improving pork quality in Suzhong pigs.
Collapse
Affiliation(s)
- Yanfeng Fu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
| | - Lan Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
| | - Shouwen Ren
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
| |
Collapse
|
13
|
Rego J, Crisp J, Moura A, Nouwens A, Li Y, Venus B, Corbet N, Corbet D, Burns B, Boe-Hansen G, McGowan M. Seminal plasma proteome of electroejaculated Bos indicus bulls. Anim Reprod Sci 2014; 148:1-17. [DOI: 10.1016/j.anireprosci.2014.04.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 04/16/2014] [Accepted: 04/30/2014] [Indexed: 12/30/2022]
|
14
|
Wang H, Fu J, Wang A. Expression of obesity gene and obesity gene long form receptor in endometrium of Yorkshire sows during embryo implantation. Mol Biol Rep 2014; 41:1597-606. [PMID: 24407604 DOI: 10.1007/s11033-013-3006-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
There is accumulating evidence that leptin may be directly involved in mammalian reproduction, however, the potential role of obesity gene/obesity gene long form receptor (ob/ob-Rb) system in porcine implantation is poorly understood. To further confirm this role, mRNA and protein expression of ob/ob-Rb in implantation site and inter-implantation sites of porcine uterus on pregnancy day 13, 18 and 24 were compared in this study. Ob mRNA level went up with the advance of pregnancy and was higher in implantation site than inter-implantation site (P < 0.05). But ob-Rb mRNA, which was negative-regulated by leptin, went down with the advance of pregnancy and lessened in implantation site compared with inter-implantation site (P < 0.05). During the three implantation phase, leptin protein peaked at day 18 pregnancy (P < 0.05) and leptin protein at implantation site were always higher than inter-implantation site (P < 0.05). The higher ob-Rb protein in implantation site compared with inter-implantation site (P < 0.05) only appeared at day 18 pregnancy. Localization of ob/ob-Rb protein in porcine uterus was assayed using immunohistochemistry and found that ob/ob-Rb protein mainly located in luminal epithelium and glandular epithelium in pregnant pigs, but distinct immune-staining of leptin also detected in stroma in non-pregnancy porcine uterus except for luminal epithelium and glandular epithelium. In conclusion, the peak of leptin and the peak of ob-Rb protein in implantation site specifically appeared on day 18 pregnancy of pig. Another funning discovery is ob-Rb mRNA in porcine endometrium was mainly negative-regulated by leptin. The space-time difference of gene and protein expression for ob/ob-Rb confirmed ob/ob-Rb system role as delicate regulator of porcine implantation process.
Collapse
Affiliation(s)
- Hongfang Wang
- National Engineering Laboratory for Animal Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | | | | |
Collapse
|
15
|
Samborski A, Graf A, Krebs S, Kessler B, Bauersachs S. Deep sequencing of the porcine endometrial transcriptome on day 14 of pregnancy. Biol Reprod 2013; 88:84. [PMID: 23426436 DOI: 10.1095/biolreprod.113.107870] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In pigs, conceptus attachment to the uterine surface epithelium starts around Day 14 of pregnancy preceded by a pronounced vascularization at the implantation zones, initiating the epitheliochorial placentation. To characterize the complex transcriptome changes in the endometrium in the course of initial conceptus attachment, deep sequencing of endometrial RNA samples of pregnant animals (n = 4) and corresponding cyclic controls (n = 4) was performed using Illumina RNA-Seq. The obtained sequence reads were mapped to the porcine genome, and relative expression values were calculated for the analysis of differential gene expression. Statistical analysis revealed 1933 differentially expressed genes (false discovery rate 1%), 1229 with higher and 704 with lower mRNA concentration, in the samples from pregnant animals. Expression of selected genes was validated by the use of quantitative real-time RT-PCR. The RNA-Seq data were compared to results of a microarray study of bovine endometrium on Day 18 of pregnancy and additional related data sets. Bioinformatics analysis revealed for the genes with higher mRNA concentration in pregnant samples strong overrepresentation, particularly for immune-related functional terms but also for apoptosis and cell adhesion. Overrepresented terms for the genes with lower mRNA concentration in pregnant samples were related to extracellular region, ion transport, cell adhesion, and lipid and steroid metabolic process. In conclusion, RNA-Seq analysis revealed comprehensive transcriptome differences in porcine endometrium between Day 14 of pregnancy and corresponding cyclic endometrium and highlighted new processes and pathways probably involved in regulation of noninvasive implantation in the pig.
Collapse
Affiliation(s)
- Anastazia Samborski
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | | | | | | | | |
Collapse
|