1
|
Li YY, Madduri SS, Rezeli ET, Santos C, Freeman III H, Peng J, McRitchie SL, Pathmasiri W, Hursting SD, Sumner SJ, Stewart DA. Macronutrient-differential dietary pattern impacts on body weight, hepatic inflammation, and metabolism. Front Nutr 2024; 11:1356038. [PMID: 38868554 PMCID: PMC11168494 DOI: 10.3389/fnut.2024.1356038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/24/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Obesity is a multi-factorial disease frequently associated with poor nutritional habits and linked to many detrimental health outcomes. Individuals with obesity are more likely to have increased levels of persistent inflammatory and metabolic dysregulation. The goal of this study was to compare four dietary patterns differentiated by macronutrient content in a postmenopausal model. Dietary patterns were high carbohydrate (HC), high fat (HF), high carbohydrate plus high fat (HCHF), and high protein (HP) with higher fiber. Methods Changes in body weight and glucose levels were measured in female, ovariectomized C57BL/6 mice after 15 weeks of feeding. One group of five mice fed the HCHF diet was crossed over to the HP diet on day 84, modeling a 21-day intervention. In a follow-up study comparing the HCHF versus HP dietary patterns, systemic changes in inflammation, using an 80-cytokine array and metabolism, by untargeted liquid chromatography-mass spectrometry (LCMS)-based metabolomics were evaluated. Results Only the HF and HCHF diets resulted in obesity, shown by significant differences in body weights compared to the HP diet. Body weight gains during the two-diet follow-up study were consistent with the four-diet study. On Day 105 of the 4-diet study, glucose levels were significantly lower for mice fed the HP diet than for those fed the HC and HF diets. Mice switched from the HCHF to the HP diet lost an average of 3.7 grams by the end of the 21-day intervention, but this corresponded with decreased food consumption. The HCHF pattern resulted in dramatic inflammatory dysregulation, as all 80 cytokines were elevated significantly in the livers of these mice after 15 weeks of HCHF diet exposure. Comparatively, only 32 markers changed significantly on the HP diet (24 up, 8 down). Metabolic perturbations in several endogenous biological pathways were also observed based on macronutrient differences and revealed dysfunction in several nutritionally relevant biosynthetic pathways. Conclusion Overall, the HCHF diet promoted detrimental impacts and changes linked to several diseases, including arthritis or breast neoplasms. Identification of dietary pattern-specific impacts in this model provides a means to monitor the effects of disease risk and test interventions to prevent poor health outcomes through nutritional modification.
Collapse
Affiliation(s)
- Yuan-yuan Li
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Supradeep S. Madduri
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Erika T. Rezeli
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charlene Santos
- Animal Studies Core Lab, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Herman Freeman III
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Jing Peng
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susan L. McRitchie
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Wimal Pathmasiri
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen D. Hursting
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susan J. Sumner
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Delisha A. Stewart
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Role of CXCL1 Chemokine in Gastrointestinal Cancers. Cells 2023; 12:1406. [PMID: 37408240 DOI: 10.3390/cells12101406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
One area of cancer research is the interaction between cancer cells and immune cells, in which chemokines play a vital role. Despite this, a comprehensive summary of the involvement of C-X-C motif ligand 1 (CXCL1) chemokine (also known as growth-regulated gene-α (GRO-α), melanoma growth-stimulatory activity (MGSA)) in cancer processes is lacking. To address this gap, this review provides a detailed analysis of CXCL1's role in gastrointestinal cancers, including head and neck cancer, esophageal cancer, gastric cancer, liver cancer (hepatocellular carcinoma (HCC)), cholangiocarcinoma, pancreatic cancer (pancreatic ductal adenocarcinoma), and colorectal cancer (colon cancer and rectal cancer). This paper presents the impact of CXCL1 on various molecular cancer processes, such as cancer cell proliferation, migration, and invasion, lymph node metastasis, angiogenesis, recruitment to the tumor microenvironment, and its effect on immune system cells, such as tumor-associated neutrophils (TAN), regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs), and macrophages. Furthermore, this review discusses the association of CXCL1 with clinical aspects of gastrointestinal cancers, including its correlation with tumor size, cancer grade, tumor-node-metastasis (TNM) stage, and patient prognosis. This paper concludes by exploring CXCL1's potential as a therapeutic target in anticancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
3
|
Urbiola-Salvador V, Jabłońska A, Miroszewska D, Huang Q, Duzowska K, Drężek-Chyła K, Zdrenka M, Śrutek E, Szylberg Ł, Jankowski M, Bała D, Zegarski W, Nowikiewicz T, Makarewicz W, Adamczyk A, Ambicka A, Przewoźnik M, Harazin-Lechowicz A, Ryś J, Filipowicz N, Piotrowski A, Dumanski JP, Li B, Chen Z. Plasma protein changes reflect colorectal cancer development and associated inflammation. Front Oncol 2023; 13:1158261. [PMID: 37228491 PMCID: PMC10203952 DOI: 10.3389/fonc.2023.1158261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is the third most common malignancy and the second leading cause of death worldwide. Efficient non-invasive blood-based biomarkers for CRC early detection and prognosis are urgently needed. Methods To identify novel potential plasma biomarkers, we applied a proximity extension assay (PEA), an antibody-based proteomics strategy to quantify the abundance of plasma proteins in CRC development and cancer-associated inflammation from few μL of plasma sample. Results Among the 690 quantified proteins, levels of 202 plasma proteins were significantly changed in CRC patients compared to age-and-sex-matched healthy subjects. We identified novel protein changes involved in Th17 activity, oncogenic pathways, and cancer-related inflammation with potential implications in the CRC diagnosis. Moreover, the interferon γ (IFNG), interleukin (IL) 32, and IL17C were identified as associated with the early stages of CRC, whereas lysophosphatidic acid phosphatase type 6 (ACP6), Fms-related tyrosine kinase 4 (FLT4), and MANSC domain-containing protein 1 (MANSC1) were correlated with the late-stages of CRC. Discussion Further study to characterize the newly identified plasma protein changes from larger cohorts will facilitate the identification of potential novel diagnostic, prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- Víctor Urbiola-Salvador
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Jabłońska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Dominika Miroszewska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Qianru Huang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Marek Zdrenka
- Department of Tumor Pathology and Pathomorphology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Ewa Śrutek
- Department of Tumor Pathology and Pathomorphology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Michał Jankowski
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Surgical Oncology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Dariusz Bała
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Surgical Oncology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Wojciech Zegarski
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Surgical Oncology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Tomasz Nowikiewicz
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Breast Cancer and Reconstructive Surgery, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Wojciech Makarewicz
- Clinic of General and Oncological Surgery, Specialist Hospital of Kościerzyna, Kościerzyna, Poland
| | - Agnieszka Adamczyk
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Aleksandra Ambicka
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Marcin Przewoźnik
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Agnieszka Harazin-Lechowicz
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Janusz Ryś
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | | | | | - Jan P. Dumanski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Chen
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
4
|
Ai D, Wang M, Zhang Q, Cheng L, Wang Y, Liu X, Xia LC. Regularized survival learning and cross-database analysis enabled identification of colorectal cancer prognosis-related immune genes. Front Genet 2023; 14:1148470. [PMID: 36911403 PMCID: PMC9995717 DOI: 10.3389/fgene.2023.1148470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Colon adenocarcinoma is the most common type of colorectal cancer. The prognosis of advanced colorectal cancer patients who received treatment is still very poor. Therefore, identifying new biomarkers for prognosis prediction has important significance for improving treatment strategies. However, the power of biomarker analyses was limited by the used sample size of individual database. In this study, we combined Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases to expand the number of healthy tissue samples. We screened differentially expressed genes between the GTEx healthy samples and TCGA tumor samples. Subsequently, we applied least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox analysis to identify nine prognosis-related immune genes: ANGPTL4, IDO1, NOX1, CXCL3, LTB4R, IL1RL2, CD72, NOS2, and NUDT6. We computed the risk scores of samples based on the expression levels of these genes and divided patients into high- and low-risk groups according to this risk score. Survival analysis results showed a significant difference in survival rate between the two risk groups. The high-risk group had a significantly lower overall survival rate and poorer prognosis. We found the receiver operating characteristic based on the risk score was showed to accurately predict patients' prognosis. These prognosis-related immune genes may be potential biomarkers for colorectal cancer diagnosis and treatment. Our open-source code is freely available from GitHub at https://github.com/gutmicrobes/Prognosis-model.git.
Collapse
Affiliation(s)
- Dongmei Ai
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Mingmei Wang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Qingchuan Zhang
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing, China
| | - Longwei Cheng
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Yishu Wang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Xiuqin Liu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Li C Xia
- School of Mathematics, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
MOKASHİ PR, BHANDARY S. “ESTIMATION OF SALIVARY LEPTIN LEVELS IN CHILDREN WITH EARLY CHILDHOOD CARIES – AN INTERVENTIONAL STUDY”. CUMHURIYET DENTAL JOURNAL 2022. [DOI: 10.7126/cumudj.1100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Early childhood caries (ECC) is a pathologic condition of multifactorial nature. The diagnosis of the same has been limited to clinical and radiographic aids with very little significance to assess its inflammatory component. objectives: The present study aims to evaluate the role of leptin, an adipocytokine as a non-invasive inflammatory biomarker in ECC.
Materials and Method: A total of 60 children between the age of (3-5) years were selected for the study. The study subjects were divided into three groups of 20 each including Group 1 as control, Group 2 with mild to moderate ECC and Group 3 with severe ECC. Saliva samples were taken from all subjects and collected again after 2 months following rehabilitative intervention. Levels of salivary leptin were determined using Enzyme-Linked Immunosorbent Assay (ELISA).
Results: Levels of salivary leptin were significantly associated with severity of dental caries. The intragroup comparisons of pre and post treatment levels of salivary leptin showed significant reductions in both mild to moderate ECC and severe ECC groups following caries control. Inter group evaluation between mild to moderate ECC and severe ECC post treatment showed statistically significant decline of leptin levels in comparison to baseline values.
Conclusion: There was a statistically significant decline in salivary leptin levels between the mild moderate and severe ECC group, after 2 months following caries control. Thus, leptin holds a potential to be recognized as a reliable future prognostic and diagnostic inflammatory marker in early childhood caries.
Collapse
|
6
|
Jia SN, Han YB, Yang R, Yang ZC. Chemokines in colon cancer progression. Semin Cancer Biol 2022; 86:400-407. [PMID: 35183412 DOI: 10.1016/j.semcancer.2022.02.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/27/2023]
Abstract
Colon cancer is a major human cancer accounting for about a tenth of all cancer cases thus making it among the top three cancers in terms of incidence as well as mortality. Metastasis to distant organs, particularly to liver, is the primary reason for associated mortality. Chemokines, the chemo-attractants for various immune cells, have increasingly been reported to be involved in cancer initiation and progression, including in colon cancer. Here we discuss the available knowledge on the role of several chemokines, such as, CCL2, CCL3, CCL5, CXCL1, CXCL2, CXCL8 in colon cancer progression. CCL20 is one chemokine with emerging evidence for its role in influencing colon cancer tumor microenvironment through the documents effects on fibroblasts, macrophages and immune cells. We focus on CCL20 and its receptor CCR6 as promising factors that affect multiple levels of colon cancer progression. They interact with several cytokines and TLR receptors leading to increased aggressiveness, as supported by multitude of evidence from in vitro, in vivo studies as well as human patient samples. CCL20-CCR6 bring about their biological effects through regulation of several signaling pathways, including, ERK and NF-κB pathways, in addition to the epithelial-mesenchymal transition. Signaling involving CCL20-CCR6 has profound effect on colon cancer hepatic metastasis. Combined with elevated CCL20 levels in colon tumors and metastatic patients, the above information points to a need for further evaluation of chemokines as diagnostic and/or prognostic biomarkers.
Collapse
Affiliation(s)
- Sheng-Nan Jia
- Department of HepatoPancreatoBiliary Medicine, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Ying-Bo Han
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Rui Yang
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Ze-Cheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
7
|
Leptin in Dental Pulp and Periapical Tissues: A Narrative Review. Int J Mol Sci 2022; 23:ijms23041984. [PMID: 35216099 PMCID: PMC8880140 DOI: 10.3390/ijms23041984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
Leptin is a non-glycosylated 16 kDa protein synthesized mainly in adipose cells. The main function of leptin is to regulate energy homeostasis and weight control in a central manner. There is increasing evidence that leptin also has systemic effects, acting as a link between innate and acquired immune responses. The expression of leptin and its receptor in human dental pulp and periradicular tissues have already been described, as well as several stimulatory effects of leptin protein expression in dental and periodontal tissues. The aim of this paper was to review and to compile the reported scientific literature on the role and effects of leptin in the dental pulp and periapical tissues. Twelve articles accomplished the inclusion criteria, and a comprehensive narrative review was carried out. Review of the available scientific literature concluded that leptin has the following effects on pulpal and periapical physiology: 1) Stimulates odontogenic differentiation of dental pulp stem cells (DPSCs), 2) Increases the expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1), odontoblastic proteins involved in odontoblastic differentiation and dentin mineralization, 3) Stimulates vascular endothelial growth factor (VEGF) expression in human dental pulp tissue and primary cultured cells of human dental pulp (hDPCs), 4) Stimulates angiogenesis in rat dental pulp cells, and 5) Induces the expression of interleucinas 6 and 8 in human periodontal ligament cells (hPDLCs). There is evidence which suggests that leptin is implicated in the dentin mineralization process and in pulpal and periapical inflammatory and reparative responses.
Collapse
|
8
|
Álvarez-Vásquez JL, Bravo-Guapisaca MI, Gavidia-Pazmiño JF, Intriago-Morales RV. Adipokines in dental pulp: physiological, pathological, and potential therapeutic roles. J Oral Biosci 2021; 64:59-70. [PMID: 34808362 DOI: 10.1016/j.job.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hundreds of adipokines have been identified, and their extensive range of endocrine functions-regulating distant organs such as oral tissues-and local autocrine/paracrine roles have been studied. In dentistry, however, adipokines are poorly known proteins in the dental pulp; few of them have been studied despite their large number. This study reviews recent advances in the investigation of dental-pulp adipokines, with an emphasis on their roles in inflammatory processes and their potential therapeutic applications. HIGHLIGHTS The most recently identified adipokines in dental pulp include leptin, adiponectin, resistin, ghrelin, oncostatin, chemerin, and visfatin. They have numerous physiological and pathological functions in the pulp tissue: they are closely related to pulp inflammatory mechanisms and actively participate in cell differentiation, mineralization, angiogenesis, and immune-system modulation. CONCLUSION Adipokines have potential clinical applications in regenerative endodontics and as biomarkers or targets for the pharmacological management of inflammatory and degenerative processes in dental pulp. A promising direction for the development of new therapies may be the use of agonists/antagonists to modulate the expression of the most studied adipokines.
Collapse
|
9
|
Aird TP, Farquharson AJ, Drew JE, Carson BP. Development of a multiplex assay to determine the expression of mitochondrial genes in human skeletal muscle. Exp Physiol 2021; 106:1659-1670. [PMID: 33963611 DOI: 10.1113/ep089557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023]
Abstract
NEW FINDINGS What is the central question of this study? Can a custom-designed multiplex gene expression assay be used to quantify expression levels of a targeted group of mitochondrial genes in human skeletal muscle? What is the main finding and its importance? A custom-designed GeXP multiplex assay was developed, and the ability to accurately quantify expression of a targeted set of mitochondrial genes in human skeletal muscle was demonstrated. It holds distinct methodological and practical advantages over other commonly used quantification methods. ABSTRACT Skeletal muscle is an important endocrine tissue demonstrating plasticity in response to external stimuli, including exercise and nutrition. Mitochondrial biogenesis is a common hallmark of adaptations to aerobic exercise training. Furthermore, altered expression of several genes implicated in the regulation of mitochondrial biogenesis, substrate oxidation and nicotinamide adenine dinucleotide (NAD+ ) biosynthesis following acute exercise underpins longer-term muscle metabolic adaptations. Gene expression is typically measured using real-time quantitative PCR platforms. However, interest has developed in the design of multiplex gene expression assays (GeXP) using the GenomeLab GeXP™ genetic analysis system, which can simultaneously quantify gene expression of multiple targets, holding distinct advantages in terms of throughput, limiting technical error, cost effectiveness, and quantifying gene co-expression. This study describes the development of a custom-designed GeXP assay incorporating the measurement of proposed regulators of mitochondrial biogenesis, substrate oxidation, and NAD+ biosynthetic capacity in human skeletal muscle and characterises the resting gene expression (overnight fasted and non-exercised) signature within a group of young, healthy, recreationally active males. The design of GeXP-based assays provides the capacity to more accurately characterise the regulation of a targeted group of genes with specific regulatory functions, a potentially advantageous development for future investigations of the regulation of muscle metabolism by exercise and/or nutrition.
Collapse
Affiliation(s)
- Tom P Aird
- Physical Education and Sports Sciences, University of Limerick, Limerick, Ireland.,Physical Activity for Health, Health Research Institute, University of Limerick, Limerick, Ireland
| | | | - Janice E Drew
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Brian P Carson
- Physical Education and Sports Sciences, University of Limerick, Limerick, Ireland.,Physical Activity for Health, Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
10
|
Ruan GT, Gong YZ, Liao XW, Wang S, Huang W, Wang XK, Zhu GZ, Liao C, Gao F. Diagnostic and prognostic values of C‑X‑C motif chemokine ligand 3 in patients with colon cancer. Oncol Rep 2019; 42:1996-2008. [PMID: 31545503 PMCID: PMC6787997 DOI: 10.3892/or.2019.7326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
The diagnostic and prognostic mechanisms of C-X-C motif chemokine ligand 3 (CXCL3) in colon cancer (CC) have not yet been reported. Therefore, the objective of the present study was to use cohorts of patients from Guangxi Medical University and the Gene Expression Omnibus (GEO) database to investigate and validate CXCL3 for the diagnosis and prognosis of CC, and to explore its prospective molecular mechanism. Reverse transcription-quantitative PCR (RT-qPCR) analysis of 38 paired tumor and non-tumor tissues, and immunohistochemistry (IHC) of 212 tumor and 46 non-tumor tissues was conducted to explore the expression of CXCL3 and its diagnostic and prognostic significance in the Guangxi Medical University CC cohort. A GEO dataset, GSE40967, was used to validate the prognostic significance of CXCL3. Gene set enrichment analysis (GSEA) was also conducted to explore the potential molecular mechanisms underlying the effects of CXCL3 in CC. The RT-qPCR results indicated that CXCL3 expression was significantly higher in cancer tissues compared with adjacent normal tissues, suggesting that it may have high diagnostic value for CC. Multivariate Cox analysis based on the IHC results suggested that there was no appreciable association between CXCL3 positivity and the overall survival (OS) time of CC. However, a stratified analysis revealed that high expression of CXCL3 was associated with considerably increased mortality in the subgroup of CC patients with tumor size <5 cm (adjusted P=0.042, adjusted HR=2.298, 95% CI=1.030–5.126) and with tumor thrombus (adjusted P=0.019, adjusted HR=5.096, 95% CI=1.306–19.886). In the GSE40967 dataset, high expression of CXCL3 was closely associated with poor OS in CC (adjusted P=0.049, adjusted HR=1.416, 95% CI=1.002–2.003). Furthermore, GSEA indicated that the high expression of CXCL3 was closely associated with DNA repair, cell cycle process, cell apoptosis process and the P53 regulation pathway. In summary, these result suggest that CXCL3 might serve as a novel biomarker in the diagnosis and prognosis of CC.
Collapse
Affiliation(s)
- Guo-Tian Ruan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yi-Zhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shuai Wang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wei Huang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiang-Kun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Cun Liao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Feng Gao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
11
|
Uyar GO, Sanlier N. Association of Adipokines and Insulin, Which Have a Role in Obesity, with Colorectal Cancer. Eurasian J Med 2019; 51:191-195. [PMID: 31258362 DOI: 10.5152/eurasianjmed.2018.18089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity-related diseases are an important part of public health; and obesity is related with colorectal cancer. Adipocyte hypertrophy and visceral adipose tissue accumulation can cause adipocitis-related diseases and pathogenic adipocyte formation. Adipose tissue has a very important and active role in immune response formation. Cytokines/adipokines, which are secreted from adipose tissue, have an active role in communication between adipocytes and macrophages. Thus, visceral adipocyte is related with low-grade chronic systemic inflammation. Adipocytes have an important role in colorectal cancer pathogenesis because of proinflammatory cytokines, growth factors, and hormones secretion. Most highlighted cytokines are adiponectin, resistin, and ghrelin. Also, insulin resistance, glucose intolerance, increased plasma insulin levels, body mass index, insulin-like growth factor (IGF-1), glucose, and serum free fatty acids levels are considered to be related with colorectal cancer pathogenesis. Thus, in this review, we focus on the role of adipokines and insulin in colorectal cancer.
Collapse
Affiliation(s)
- Gizem Ozata Uyar
- Department of Nutrition and Dietetics, Gazi University School of Health Sciences, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, Lokman Hekim University School of Health Sciences, Ankara, Turkey
| |
Collapse
|
12
|
Pérez-Pérez A, Vilariño-García T, Fernández-Riejos P, Martín-González J, Segura-Egea JJ, Sánchez-Margalet V. Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev 2017; 35:71-84. [PMID: 28285098 DOI: 10.1016/j.cytogfr.2017.03.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/24/2022]
Abstract
Leptin is an adipocyte-derived hormone not only with an important role in the central control of energy metabolism, but also with many pleiotropic effects in different physiological systems. One of these peripheral functions of leptin is a regulatory role in the interplay between energy metabolism and the immune system, being a cornerstone of the new field of immunometabolism. Leptin receptor is expressed throughout the immune system and the regulatory effects of leptin include cells from both the innate and adaptive immune system. Leptin is one of the adipokines responsible for the inflammatory state found in obesity that predisposes not only to type 2 diabetes, metabolic syndrome and cardiovascular disease, but also to autoimmune and allergic diseases. Leptin is an important mediator of the immunosuppressive state in undernutrition status. Placenta is the second source of leptin and it may play a role in the immunomodulation during pregnancy. Finally, recent work has pointed to the participation of leptin and leptin receptor in the pathophysiology of inflammation in oral biology. Therefore, leptin and leptin receptor should be considered for investigation as a marker of inflammation and immune activation in the frontier of innate-adaptive system, and as possible targets for intervention in the immunometabolic mediated pathophysiology.
Collapse
Affiliation(s)
- Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School and Department of Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Spain
| | - Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School and Department of Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Spain
| | - Patricia Fernández-Riejos
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School and Department of Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Spain
| | - Jenifer Martín-González
- Department of Stomatology (Endodontics Section), School of Dentistry, University of Seville, Seville, Spain
| | - Juan José Segura-Egea
- Department of Stomatology (Endodontics Section), School of Dentistry, University of Seville, Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School and Department of Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Spain.
| |
Collapse
|
13
|
Ruebel ML, Cotter M, Sims CR, Moutos DM, Badger TM, Cleves MA, Shankar K, Andres A. Obesity Modulates Inflammation and Lipid Metabolism Oocyte Gene Expression: A Single-Cell Transcriptome Perspective. J Clin Endocrinol Metab 2017; 102:2029-2038. [PMID: 28323970 PMCID: PMC5470765 DOI: 10.1210/jc.2016-3524] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/10/2017] [Indexed: 01/19/2023]
Abstract
CONTEXT It is hypothesized that obesity adversely affects the ovarian environment, which can disrupt oocyte maturation and embryonic development. OBJECTIVE This study aimed to compare oocyte gene expression profiles and follicular fluid (FF) content from overweight/obese (OW) women and normal-weight (NW) women who were undergoing fertility treatments. DESIGN Using single-cell transcriptomic analyses, we investigated oocyte gene expression using RNA sequencing. PATIENTS OR OTHER PARTICIPANTS Eleven OW women and 13 NW women undergoing fertility treatments were enrolled. MAIN OUTCOME MEASURES Oocyte messenger RNA profiles as well as serum and FF hormone and lipid levels were assessed. RESULTS OW women had significantly higher body mass index, body fat percentage, and serum homeostatic model assessment-insulin resistance index compared with NW women (P < 0.01). Serum leptin and C-reactive protein (CRP) levels as well as FF leptin, CRP, and triglyceride levels were increased (P < 0.05) in OW compared with NW women. Oocytes from OW women had increased expression of proinflammatory (CXCL2; P = 0.071) and oxidative stress-related (DUSP1; P = 0.051) genes but had decreased expression of GAS7 (fat metabolism; P = 0.065), TXNIP (oxidative stress; P = 0.055), and transcription factors ID3 (P = 0.075) and TWIST1 (P = 0.099) compared with NW women. CONCLUSIONS These findings provide evidence for the significant influence of body composition on oocyte transcript abundance in women undergoing hormonal induction to retrieve oocytes. They further identify the potential for maternal diet to influence oocyte gene expression. The preconception period is, therefore, an important window of opportunity to consider for lifestyle interventions.
Collapse
Affiliation(s)
- Meghan L. Ruebel
- Arkansas Children’s Nutrition Center, Little Rock, Arkansas 72202
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan 48824
| | - Matthew Cotter
- Arkansas Children’s Nutrition Center, Little Rock, Arkansas 72202
| | - Clark R. Sims
- Arkansas Children’s Nutrition Center, Little Rock, Arkansas 72202
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Dean M. Moutos
- Arkansas Fertility and Gynecology Clinic, Little Rock, Arkansas 72205
| | - Thomas M. Badger
- Arkansas Children’s Nutrition Center, Little Rock, Arkansas 72202
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Mario A. Cleves
- Arkansas Children’s Nutrition Center, Little Rock, Arkansas 72202
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kartik Shankar
- Arkansas Children’s Nutrition Center, Little Rock, Arkansas 72202
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Aline Andres
- Arkansas Children’s Nutrition Center, Little Rock, Arkansas 72202
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
14
|
Zhang YF, Xie ZX, Xie LJ, Deng XW, Xie ZQ, Luo SS, Huang L, Huang JL, Zeng TT. GeXP analyzer-based multiplex reverse-transcription PCR assay for the simultaneous detection and differentiation of eleven duck viruses. BMC Microbiol 2015; 15:247. [PMID: 26518004 PMCID: PMC4628294 DOI: 10.1186/s12866-015-0590-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/23/2015] [Indexed: 01/21/2023] Open
Abstract
Background Duck viral pathogens primarily include the avian influenza virus (AIV) subtypes H5, H7, and H9; duck hepatitis virus (DHV); duck tembusu virus (DTMUV); egg drop syndrome virus (EDSV); duck enteritis virus (DEV); Newcastle disease virus (NDV); duck circovirus (DuCV); muscovy duck reovirus (MDRV); and muscovy duck parvovirus (MDPV). These pathogens cause great economic losses to China’s duck breeding industry. Result A rapid, specific, sensitive and high-throughput GeXP-based multiplex PCR assay consisting of chimeric primer-based PCR amplification with fluorescent labeling and capillary electrophoresis separation was developed and optimized to simultaneously detect these eleven viral pathogens. Single and mixed pathogen cDNA/DNA templates were used to evaluate the specificity of the GeXP-multiplex assay. Corresponding specific DNA products were amplified from each pathogen. Other pathogens, including duck Escherichia coli, duck Salmonella, duck Staphylococcus aureus, Pasteurella multocida, infectious bronchitis virus, and Mycoplasma gallisepticum, did not result in amplification products. The detection limit of GeXP was 103copies when all twelve pre-mixed plasmids containing the target genes of eleven types of duck viruses were present. To further evaluate the reliability of GeXP, 150 clinical field samples were evaluated. Comparison with the results of conventional PCR methods for the field samples, the GeXP-multiplex PCR method was more sensitive and accurate. Conclusion This GeXP-based multiplex PCR method can be utilized for the rapid differential diagnosis of clinical samples as an effective tool to prevent and control duck viruses with similar clinical symptoms.
Collapse
Affiliation(s)
- Yan-Fang Zhang
- Department of Biotechnology, Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China.
| | - Zhi-Xun Xie
- Department of Biotechnology, Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China.
| | - Li-Ji Xie
- Department of Biotechnology, Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China.
| | - Xian-Wen Deng
- Department of Biotechnology, Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China.
| | - Zhi-Qin Xie
- Department of Biotechnology, Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China.
| | - Si-Si Luo
- Department of Biotechnology, Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China.
| | - Li Huang
- Department of Biotechnology, Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China.
| | - Jiao-Ling Huang
- Department of Biotechnology, Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China.
| | - Ting-Ting Zeng
- Department of Biotechnology, Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China.
| |
Collapse
|
15
|
Xie Z, Luo S, Xie L, Liu J, Pang Y, Deng X, Xie Z, Fan Q, Khan MI. Simultaneous typing of nine avian respiratory pathogens using a novel GeXP analyzer-based multiplex PCR assay. J Virol Methods 2014; 207:188-95. [PMID: 25025815 DOI: 10.1016/j.jviromet.2014.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 01/07/2023]
Abstract
A new, rapid, and high-throughput GenomeLab Gene Expression Profiler (GeXP) analyzer-based multiplex PCR method was developed for simultaneous detection and differentiation of nine avian respiratory pathogens. The respiratory pathogens included in this study were avian influenza subtypes H5, H7, and H9, infectious bronchitis virus (IBV), Newcastle disease virus (NDV), infectious laryngotracheitis virus (ILTV), Mycoplasma gallisepticum (MG), Mycoplasma synoviae (MS) and Haemophilus paragallinarum (HPG). Ten pairs of primers were designed using conserved and specific sequence genes of AIV subtypes and respiratory pathogens from GenBank. Single and mixed pathogen cDNA/DNA templates were used to evaluate the specificity of the GeXP-multiplex assay. The corresponding specific DNA products were amplified for each pathogen. The specific DNA product amplification peaks of nine respiratory pathogens were observed on the GeXP analyzer. Non-respiratory avian pathogens, including chicken infectious anemia virus, fowl adenovirus, avian reovirus and infectious bursal disease virus, did not produce DNA products. The detection limit for the GeXP-multiplex assay was determined to be 100 copies/μl using various pre-mixed plasmids/ssRNAs containing known target genes of the respiratory pathogens. Further, GeXP-multiplex PCR assay was 100% specific when 24 clinical samples with respiratory infections were tested in comparison with conventional PCR method. The GeXP-multiplex PCR assay provides a novel tool for simultaneous detection and differentiation of nine avian respiratory pathogens.
Collapse
Affiliation(s)
- Zhixun Xie
- Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning 530001, China.
| | - Sisi Luo
- Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning 530001, China
| | - Liji Xie
- Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning 530001, China
| | - Jiabo Liu
- Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning 530001, China
| | - Yaoshan Pang
- Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning 530001, China
| | - Xianwen Deng
- Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning 530001, China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning 530001, China
| | - Qing Fan
- Guangxi Key Laboratory of Animal Vaccines and Diagnostics, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning 530001, China
| | - Mazhar I Khan
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269-3089, USA.
| |
Collapse
|
16
|
Olivo-Marston SE, Hursting SD, Perkins SN, Schetter A, Khan M, Croce C, Harris CC, Lavigne J. Effects of calorie restriction and diet-induced obesity on murine colon carcinogenesis, growth and inflammatory factors, and microRNA expression. PLoS One 2014; 9:e94765. [PMID: 24732966 PMCID: PMC3986228 DOI: 10.1371/journal.pone.0094765] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/28/2013] [Indexed: 12/17/2022] Open
Abstract
Obesity is an established colon cancer risk factor, while preventing or reversing obesity via a calorie restriction (CR) diet regimen decreases colon cancer risk. Unfortunately, the biological mechanisms underlying these associations are poorly understood, hampering development of mechanism-based approaches for preventing obesity-related colon cancer. We tested the hypotheses that diet-induced obesity (DIO) would increase (and CR would decrease) colon tumorigenesis in the mouse azoxymethane (AOM) model. In addition, we established that changes in inflammatory cytokines, growth factors, and microRNAs are associated with these energy balance-colon cancer links, and thus represent mechanism-based targets for colon cancer prevention. Mice were injected with AOM once a week for 5 weeks and randomized to: 1) control diet; 2) 30% CR diet; or 3) DIO diet. Mice were euthanized at week 5 (n = 12/group), 10 (n = 12/group), and 20 (n = 20/group) after the last AOM injection. Colon tumors were counted, and cytokines, insulin-like growth factor 1 (IGF-1), IGF binding protein 3 (IGFBP-3), adipokines, proliferation, apoptosis, and expression of microRNAs (miRs) were measured. The DIO diet regimen induced an obese phenotype (∼36% body fat), while CR induced a lean phenotype (∼14% body fat); controls were intermediate (∼26% body fat). Relative to controls, DIO increased (and CR decreased) the number of colon tumors (p = 0.01), cytokines (p<0.001), IGF-1 (p = 0.01), and proliferation (p<0.001). DIO decreased (and CR increased) IGFBP-3 and apoptosis (p<0.001). miRs including mir-425, mir-196, mir-155, mir-150, mir-351, mir-16, let-7, mir34, and mir-138 were differentially expressed between the dietary groups. We conclude that the enhancing effects of DIO and suppressive effects of CR on colon carcinogenesis are associated with alterations in several biological pathways, including inflammation, IGF-1, and microRNAs.
Collapse
Affiliation(s)
- Susan E. Olivo-Marston
- Laboratory of Human Carcinogenesis, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Epidemioogy, The Ohio State University College of Public Health, Columbus, Ohio, United States of America
- * E-mail:
| | - Stephen D. Hursting
- Department of Nutritional Sciences, University of Texas-Austin, Austin, Texas, United States of America
- Department of Molecular Carcinogenesis, University of Texas-MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Susan N. Perkins
- Center for Cancer Training, The National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Aaron Schetter
- Laboratory of Human Carcinogenesis, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mohammed Khan
- Laboratory of Human Carcinogenesis, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Carlo Croce
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jackie Lavigne
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|
17
|
Chang ZY, Sun R, Ma YS, Fu D, Lai XL, Li YS, Wang XH, Zhang XP, Lv ZW, Cong XL, Li WP. Differential gene expression of the key signalling pathway in para-carcinoma, carcinoma and relapse human pancreatic cancer. Cell Biochem Funct 2014; 32:258-67. [PMID: 24122964 DOI: 10.1002/cbf.3009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/01/2013] [Accepted: 09/16/2013] [Indexed: 01/21/2023]
Abstract
Pancreatic cancer (PC) has a high rate of mortality and a poorly understood mechanism of progression. Investigation of the molecular mechanism of PC and exploration of the specific markers for early diagnosis and specific targets of therapy are key points to prevent and treat PC effectively and to improve their prognosis. In our study, expression profiles experiment of para-carcinoma, carcinoma and relapse human PC was performed using Agilent human whole genomic oligonucleotide microarrays with 45 000 probes. Differentially expressed genes related with PC were screened and analysed further by Gene Ontology term analysis and Kyoto encyclopaedia of genes and genomes pathway analysis. Our results showed that there were 3853 differentially expressed genes associated with pancreatic carcinogenesis and relapse. In addition, our study found that PC was related to the Jak-STAT signalling pathway, PPAR signalling pathway and Calcium signalling pathway, indicating their potential roles in pancreatic carcinogenesis and progress.
Collapse
Affiliation(s)
- Zheng-Yan Chang
- Veterinary Faculty, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tong J, Buch S, Yao H, Wu C, Tong HI, Wang Y, Lu Y. Monocytes-derived macrophages mediated stable expression of human brain-derived neurotrophic factor, a novel therapeutic strategy for neuroAIDS. PLoS One 2014; 9:e82030. [PMID: 24505242 PMCID: PMC3914783 DOI: 10.1371/journal.pone.0082030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 10/19/2013] [Indexed: 12/30/2022] Open
Abstract
HIV-1 associated dementia remains a significant public health burden. Clinical and experimental research has shown that reduced levels of brain-derived neurotrophic factor (BDNF) may be a risk factor for neurological complications associated with HIV-1 infection. We are actively testing genetically modified macrophages for their possible use as the cell-based gene delivery vehicle for the central nervous system (CNS). It can be an advantage to use the natural homing/migratory properties of monocyte-derived macrophages to deliver potentially neuroprotective BDNF into the CNS, as a non-invasive manner. Lentiviral-mediated gene transfer of human (h)BDNF plasmid was constructed and characterized. Defective lentiviral stocks were generated by transient transfection of 293T cells with lentiviral transfer plasmid together with packaging and envelope plasmids. High titer lentiviral vector stocks were harvested and used to transduce human neuronal cell lines, primary cultures of human peripheral mononocyte-derived macrophages (hMDM) and murine myeloid monocyte-derived macrophages (mMDM). These transduced cells were tested for hBDNF expression, stability, and neuroprotective activity. The GenomeLab GeXP Genetic Analysis System was used to evaluate transduced cells for any adverse effects by assessing gene profiles of 24 reference genes. High titer vectors were prepared for efficient transduction of neuronal cell lines, hMDM, and mMDM. Stable secretion of high levels of hBDNF was detected in supernatants of transduced cells using western blot and ELISA. The conditioned media containing hBDNF were shown to be protective to neuronal and monocytic cell lines from TNF-α and HIV-1 Tat mediated cytotoxicity. Lentiviral vector-mediated gene transduction of hMDM and mMDM resulted in high-level, stable expression of the neuroprotective factorBDNF in vitro. These findings form the basis for future research on the potential use of BDNF as a novel therapy for neuroAIDS.
Collapse
Affiliation(s)
- Jing Tong
- MOE Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, People's Republic of China
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Shilpa Buch
- University of Nebraska Medical Center, Pharmacology and Experimental Neuroscience, Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Honghong Yao
- University of Nebraska Medical Center, Pharmacology and Experimental Neuroscience, Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Chengxiang Wu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Hsin-I Tong
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Youwei Wang
- MOE Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, People's Republic of China
- * E-mail: (YW); (YL)
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail: (YW); (YL)
| |
Collapse
|
19
|
Martín-González J, Sánchez-Jiménez F, Pérez-Pérez A, Carmona-Fernández A, Sánchez-Margalet V, Segura-Egea JJ. Leptin expression in healthy and inflamed human dental pulp. Int Endod J 2012; 46:442-8. [DOI: 10.1111/iej.12009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 09/04/2012] [Indexed: 01/03/2023]
Affiliation(s)
- J. Martín-González
- Department of Stomatology (Endodontics section); School of Dentistry,; University of Sevilla,; Sevilla; Spain
| | - F. Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology; Virgen Macarena Hospital,; University of Sevilla,; Sevilla; Spain
| | - A. Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology; Virgen Macarena Hospital,; University of Sevilla,; Sevilla; Spain
| | - A. Carmona-Fernández
- Department of Medical Biochemistry and Molecular Biology; Virgen Macarena Hospital,; University of Sevilla,; Sevilla; Spain
| | - V. Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology; Virgen Macarena Hospital,; University of Sevilla,; Sevilla; Spain
| | - J. J. Segura-Egea
- Department of Stomatology (Endodontics section); School of Dentistry,; University of Sevilla,; Sevilla; Spain
| |
Collapse
|
20
|
Drew JE. Cellular defense system gene expression profiling of human whole blood: opportunities to predict health benefits in response to diet. Adv Nutr 2012; 3:499-505. [PMID: 22797985 PMCID: PMC3649718 DOI: 10.3945/an.112.002121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Diet is a critical factor in the maintenance of human cellular defense systems, immunity, inflammation, redox regulation, metabolism, and DNA repair that ensure optimal health and reduce disease risk. Assessment of dietary modulation of cellular defense systems in humans has been limited due to difficulties in accessing target tissues. Notably, peripheral blood gene expression profiles associated with nonhematologic disease are detectable. Coupled with recent innovations in gene expression technologies, gene expression profiling of human blood to determine predictive markers associated with health status and dietary modulation is now a feasible prospect for nutrition scientists. This review focuses on cellular defense system gene expression profiling of human whole blood and the opportunities this presents, using recent technological advances, to predict health status and benefits conferred by diet.
Collapse
|