Zakaria NA, Islam MA, Abdullah WZ, Bahar R, Mohamed Yusoff AA, Abdul Wahab R, Shamsuddin S, Johan MF. Epigenetic Insights and Potential Modifiers as Therapeutic Targets in
β-Thalassemia.
Biomolecules 2021;
11:755. [PMID:
34070036 PMCID:
PMC8158146 DOI:
10.3390/biom11050755]
[Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 01/28/2023] Open
Abstract
Thalassemia, an inherited quantitative globin disorder, consists of two types, α- and β-thalassemia. β-thalassemia is a heterogeneous disease that can be asymptomatic, mild, or even severe. Considerable research has focused on investigating its underlying etiology. These studies found that DNA hypomethylation in the β-globin gene cluster is significantly related to fetal hemoglobin (HbF) elevation. Histone modification reactivates γ-globin gene expression in adults and increases β-globin expression. Down-regulation of γ-globin suppressor genes, i.e., BCL11A, KLF1, HBG-XMN1, HBS1L-MYB, and SOX6, elevates the HbF level. β-thalassemia severity is predictable through FLT1, ARG2, NOS2A, and MAP3K5 gene expression. NOS2A and MAP3K5 may predict the β-thalassemia patient's response to hydroxyurea, a HbF-inducing drug. The transcription factors NRF2 and BACH1 work with antioxidant enzymes, i.e., PRDX1, PRDX2, TRX1, and SOD1, to protect erythrocytes from oxidative damage, thus increasing their lifespan. A single β-thalassemia-causing mutation can result in different phenotypes, and these are predictable by IGSF4 and LARP2 methylation as well as long non-coding RNA expression levels. Finally, the coinheritance of β-thalassemia with α-thalassemia ameliorates the β-thalassemia clinical presentation. In conclusion, the management of β-thalassemia is currently limited to genetic and epigenetic approaches, and numerous factors should be further explored in the future.
Collapse