1
|
Graf J, Schulz H, Wehland M, Corydon TJ, Sahana J, Abdelfattah F, Wuest SL, Egli M, Krüger M, Kraus A, Wise PM, Infanger M, Grimm D. Omics Studies of Tumor Cells under Microgravity Conditions. Int J Mol Sci 2024; 25:926. [PMID: 38255998 PMCID: PMC10815863 DOI: 10.3390/ijms25020926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer is defined as a group of diseases characterized by abnormal cell growth, expansion, and progression with metastasis. Various signaling pathways are involved in its development. Malignant tumors exhibit a high morbidity and mortality. Cancer research increased our knowledge about some of the underlying mechanisms, but to this day, our understanding of this disease is unclear. High throughput omics technology and bioinformatics were successful in detecting some of the unknown cancer mechanisms. However, novel groundbreaking research and ideas are necessary. A stay in orbit causes biochemical and molecular biological changes in human cancer cells which are first, and above all, due to microgravity (µg). The µg-environment provides conditions that are not reachable on Earth, which allow researchers to focus on signaling pathways controlling cell growth and metastasis. Cancer research in space already demonstrated how cancer cell-exposure to µg influenced several biological processes being involved in cancer. This novel approach has the potential to fight cancer and to develop future cancer strategies. Space research has been shown to impact biological processes in cancer cells like proliferation, apoptosis, cell survival, adhesion, migration, the cytoskeleton, the extracellular matrix, focal adhesion, and growth factors, among others. This concise review focuses on publications related to genetic, transcriptional, epigenetic, proteomic, and metabolomic studies on tumor cells exposed to real space conditions or to simulated µg using simulation devices. We discuss all omics studies investigating different tumor cell types from the brain and hematological system, sarcomas, as well as thyroid, prostate, breast, gynecologic, gastrointestinal, and lung cancers, in order to gain new and innovative ideas for understanding the basic biology of cancer.
Collapse
Affiliation(s)
- Jenny Graf
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.); (J.S.)
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.); (J.S.)
| | - Fatima Abdelfattah
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
| | - Simon L. Wuest
- Space Biology Group, Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland (M.E.)
| | - Marcel Egli
- Space Biology Group, Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland (M.E.)
- National Center for Biomedical Research in Space, Innovation Cluster Space and Aviation (UZH Space Hub), University Zurich, 8006 Zurich, Switzerland
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
| | - Armin Kraus
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Petra M. Wise
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Manfred Infanger
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.); (J.S.)
| |
Collapse
|
2
|
Extraterrestrial Gynecology: Could Spaceflight Increase the Risk of Developing Cancer in Female Astronauts? An Updated Review. Int J Mol Sci 2022; 23:ijms23137465. [PMID: 35806469 PMCID: PMC9267413 DOI: 10.3390/ijms23137465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Outer space is an extremely hostile environment for human life, with ionizing radiation from galactic cosmic rays and microgravity posing the most significant hazards to the health of astronauts. Spaceflight has also been shown to have an impact on established cancer hallmarks, possibly increasing carcinogenic risk. Terrestrially, women have a higher incidence of radiation-induced cancers, largely driven by lung, thyroid, breast, and ovarian cancers, and therefore, historically, they have been permitted to spend significantly less time in space than men. In the present review, we focus on the effects of microgravity and radiation on the female reproductive system, particularly gynecological cancer. The aim is to provide a summary of the research that has been carried out related to the risk of gynecological cancer, highlighting what further studies are needed to pave the way for safer exploration class missions, as well as postflight screening and management of women astronauts following long-duration spaceflight.
Collapse
|
3
|
Evans JJ, Alkaisi MM, Sykes PH. Tumour Initiation: a Discussion on Evidence for a "Load-Trigger" Mechanism. Cell Biochem Biophys 2019; 77:293-308. [PMID: 31598831 PMCID: PMC6841748 DOI: 10.1007/s12013-019-00888-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022]
Abstract
Appropriate mechanical forces on cells are vital for normal cell behaviour and this review discusses the possibility that tumour initiation depends partly on the disruption of the normal physical architecture of the extracellular matrix (ECM) around a cell. The alterations that occur thence promote oncogene expression. Some questions, that are not answered with certainty by current consensus mechanisms of tumourigenesis, are elegantly explained by the triggering of tumours being a property of the physical characteristics of the ECM, which is operative following loading of the tumour initiation process with a relevant gene variant. Clinical observations are consistent with this alternative hypothesis which is derived from studies that have, together, accumulated an extensive variety of data incorporating biochemical, genetic and clinical findings. Thus, this review provides support for the view that the ECM may have an executive function in induction of a tumour. Overall, reported observations suggest that either restoring an ECM associated with homeostasis or targeting the related signal transduction mechanisms may possibly be utilised to modify or control the early progression of cancers. The review provides a coherent template for discussing the notion, in the context of contemporary knowledge, that tumourigenesis is an alliance of biochemistry, genetics and biophysics, in which the physical architecture of the ECM may be a fundamental component. For more definitive clarification of the concept there needs to be a phalanx of experiments conceived around direct questions that are raised by this paper.
Collapse
Affiliation(s)
- John J Evans
- Department of Obstetrics and Gynaecology, University of Otago Christchurch, Christchurch, New Zealand.
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Christchurch, New Zealand.
| | - Maan M Alkaisi
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Christchurch, New Zealand
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
| | - Peter H Sykes
- Department of Obstetrics and Gynaecology, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
4
|
The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 2019; 67:122-153. [PMID: 30914279 DOI: 10.1016/j.semcancer.2019.03.004] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.
Collapse
|
5
|
Bauer J, Bussen M, Wise P, Wehland M, Schneider S, Grimm D. Searching the literature for proteins facilitates the identification of biological processes, if advanced methods of analysis are linked: a case study on microgravity-caused changes in cells. Expert Rev Proteomics 2016; 13:697-705. [DOI: 10.1080/14789450.2016.1197775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Johann Bauer
- Informationsvermittlung, Max-Planck Institute for Biochemistry, Martinsried, Germany
| | - Markus Bussen
- Lifescience, Elsevier Information System GmbH, Frankfurt am Main, Germany
| | - Petra Wise
- Hematology/Oncology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sabine Schneider
- Informationsvermittlung, Max-Planck Institute for Biochemistry, Martinsried, Germany
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Institute of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Tan LH, Sykes PH, Alkaisi MM, Evans JJ. The characteristics of Ishikawa endometrial cancer cells are modified by substrate topography with cell-like features and the polymer surface. Int J Nanomedicine 2015; 10:4883-95. [PMID: 26346435 PMCID: PMC4531047 DOI: 10.2147/ijn.s86336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Conventional in vitro culture studies on flat surfaces do not reproduce tissue environments, which have inherent topographical mechanical signals. To understand the impact of these mechanical signals better, we use a cell imprinting technique to replicate cell features onto hard polymer culture surfaces as an alternative platform for investigating biomechanical effects on cells; the high-resolution replication of cells offers the micro- and nanotopography experienced in typical cell–cell interactions. We call this platform a Bioimprint. Cells of an endometrial adenocarcinoma cell line, Ishikawa, were cultured on a bioimprinted substrate, in which Ishikawa cells were replicated on polymethacrylate (pMA) and polystyrene (pST), and compared to cells cultured on flat surfaces. Characteristics of cells, incorporating morphology and cell responses, including expression of adhesion-associated molecules and cell proliferation, were studied. In this project, we fabricated two different topographies for the cells to grow on: a negative imprint that creates cell-shaped hollows and a positive imprint that recreates the raised surface topography of a cell layer. We used two different substrate materials, pMA and pST. We observed that cells on imprinted substrates of both polymers, compared to cells on flat surfaces, exhibited higher expression of β1-integrin, focal adhesion kinase, and cytokeratin-18. Compared to cells on flat surfaces, cells were larger on imprinted pMA and more in number, whereas on pST-imprinted surfaces, cells were smaller and fewer than those on a flat pST surface. This method, which provided substrates in vitro with cell-like features, enabled the study of effects of topographies that are similar to those experienced by cells in vivo. The observations establish that such a physical environment has an effect on cancer cell behavior independent of the characteristics of the substrate. The results support the concept that the physical topography of a cell’s environment may modulate crucial oncological signaling pathways; this suggests the possibility of cancer therapies that target pathways associated with the response to mechanical stimuli.
Collapse
Affiliation(s)
- Li Hui Tan
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand ; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Peter H Sykes
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
| | - Maan M Alkaisi
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand ; Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
| | - John J Evans
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand ; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand ; Centre for Neuroendocrinology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
7
|
Koch C, Kohn FPM, Bauer J. Preparing normal tissue cells for space flight experiments. Prep Biochem Biotechnol 2015; 46:208-13. [PMID: 25806650 DOI: 10.1080/10826068.2015.1015565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Deterioration of health is a problem in modern space flight business. In order to develop countermeasures, research has been done on human bodies and also on single cells. Relevant experiments on human cells in vitro are feasible when microgravity is simulated by devices such as the Random Positioning Machine or generated for a short time during parabolic flights. However, they become difficult in regard to performance and interpretation when long-term experiments are designed that need a prolonged stay on the International Space Station (ISS). One huge problem is the transport of living cells from a laboratory on Earth to the ISS. For this reason, mainly rapidly growing, rather robust human cells such as cancer cells, embryonic cells, or progenitor cells have been investigated on the ISS up to now. Moreover, better knowledge on the behavior of normal mature cells, which mimic the in vivo situation, is strongly desirable. One solution to the problem could be the use of redifferentiable cells, which grow rapidly and behave like cancer cells in plain medium, but are reprogrammed to normal cells when substances like retinoic acid are added. A list of cells capable of redifferentiation is provided, together with names of suitable drugs, in this review.
Collapse
Affiliation(s)
- Claudia Koch
- a Institute of Physiology, Department of Membrane Physiology , University of Hohenheim , Stuttgart , Germany
| | - Florian P M Kohn
- a Institute of Physiology, Department of Membrane Physiology , University of Hohenheim , Stuttgart , Germany
| | - Johann Bauer
- b Max Planck Institute of Biochemistry , Martinsried , Germany
| |
Collapse
|
8
|
Novoselova EG, Lunin SM, Khrenov MO, Parfenyuk SB, Novoselova TV, Shenkman BS, Fesenko EE. Changes in immune cell signalling, apoptosis and stress response functions in mice returned from the BION-M1 mission in space. Immunobiology 2014; 220:500-9. [PMID: 25468559 DOI: 10.1016/j.imbio.2014.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 11/30/2022]
Abstract
To explore the effect of the spaceflight environment on immunity in animals, C57/BL6 mice flown on a 30-day space high-orbit satellite mission (BION-M1) were analyzed. Cytokine response in mice was measured in tandem with the following parameters: the synthesis of inducible forms of the heat shock proteins HSP72 and HSP90α; activity of the NF-κB, IFR3, and SAPK/JNK signalling pathways; and TLR4 expression. In addition, apoptosis in the thymus was measured by caspase-3 and ph-p53/p53 ratio testing. In response to flight environment exposure, mice had a reduction in spleen and thymus masses and decreased splenic and thymic lymphocyte counts. Plasma concentration of IL-6 and IFN-γ but not TNF-α was decreased in C57BL6 mice. The NF-κB activity in splenic lymphocytes through the canonical pathway involving IκB degradation was significantly increased at 12h after landing. One week after landing, however, the activity of NF-κB was markedly decreased below even the control values. Non-canonical NF-κB activity increased during the whole observation period. The activities of SAPK/JNK and IRF-3 were invariable at 12h but significantly increased 7 days after landing. The expression of Hsp72 and Hsp90α was somewhat increased 12h (Hsp72) and 7 days (Hsp90α). TLR4 expression in splenic cells was significantly increased only at 12h, returning to normal 7 days after landing. To assess the apoptosis in thymus lymphocytes, caspase-3 and levels of p53 protein along with its phosphorylated form were measured in thymic lymphocytes. The results indicated that the high-orbit spaceflight environment caused an increase in the level of p53 but more notably in the activated, phosphorylated form of the p53 protein. The calculated ratio of the active to inactive forms of the protein (ph-53/p53) 12h after landing increased by more than twofold, indicating the apparent induction of apoptosis in thymus cells. Interestingly, 7 days after the landing, this ratio was not restored, but rather increased: the specified ratio was four times higher compared to the ground-based control. Measurements of caspase-3 in thymic cells indicated more expressive increase in apoptosis. Taken together, the results of the present study indicate that spaceflight induces an imbalance in the immunity of mice, showing variation in signalling, apoptosis and stress response that are not restored by 7 days after landing. These changes are distinguished from classic stress-related alterations usually caused by conventional stressors.
Collapse
Affiliation(s)
- E G Novoselova
- Institute of Cell Biophysics, Pushchino, Moscow Region, Russia.
| | - S M Lunin
- Institute of Cell Biophysics, Pushchino, Moscow Region, Russia
| | - M O Khrenov
- Institute of Cell Biophysics, Pushchino, Moscow Region, Russia
| | - S B Parfenyuk
- Institute of Cell Biophysics, Pushchino, Moscow Region, Russia
| | - T V Novoselova
- Institute of Cell Biophysics, Pushchino, Moscow Region, Russia
| | - B S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - E E Fesenko
- Institute of Cell Biophysics, Pushchino, Moscow Region, Russia
| |
Collapse
|
9
|
Grimm D, Pietsch J, Wehland M, Richter P, Strauch SM, Lebert M, Magnusson NE, Wise P, Bauer J. The impact of microgravity-based proteomics research. Expert Rev Proteomics 2014; 11:465-76. [DOI: 10.1586/14789450.2014.926221] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniela Grimm
- Institute of Biomedicine, Pharmacology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jessica Pietsch
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Peter Richter
- Department of Biology, Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Sebastian M Strauch
- Department of Biology, Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Michael Lebert
- Department of Biology, Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Nils Erik Magnusson
- Medical Research Laboratories, Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Petra Wise
- Hematology/Oncology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Johann Bauer
- Max-Planck Institute for Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
10
|
Gridley DS, Mao XW, Stodieck LS, Ferguson VL, Bateman TA, Moldovan M, Cunningham CE, Jones TA, Slater JM, Pecaut MJ. Changes in mouse thymus and spleen after return from the STS-135 mission in space. PLoS One 2013; 8:e75097. [PMID: 24069384 PMCID: PMC3777930 DOI: 10.1371/journal.pone.0075097] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/08/2013] [Indexed: 11/21/2022] Open
Abstract
Our previous results with flight (FLT) mice showed abnormalities in thymuses and spleens that have potential to compromise immune defense mechanisms. In this study, the organs were further evaluated in C57BL/6 mice after Space Shuttle Atlantis returned from a 13-day mission. Thymuses and spleens were harvested from FLT mice and ground controls housed in similar animal enclosure modules (AEM). Organ and body mass, DNA fragmentation and expression of genes related to T cells and cancer were determined. Although significance was not obtained for thymus mass, DNA fragmentation was greater in the FLT group (P<0.01). Spleen mass alone and relative to body mass was significantly decreased in FLT mice (P<0.05). In FLT thymuses, 6/84 T cell-related genes were affected versus the AEM control group (P<0.05; up: IL10, Il18bp, Il18r1, Spp1; down: Ccl7, IL6); 15/84 cancer-related genes had altered expression (P<0.05; up: Casp8, FGFR2, Figf, Hgf, IGF1, Itga4, Ncam1, Pdgfa, Pik3r1, Serpinb2, Sykb; down: Cdc25a, E2F1, Mmp9, Myc). In the spleen, 8/84 cancer-related genes were affected in FLT mice compared to AEM controls (P<0.05; up: Cdkn2a; down: Birc5, Casp8, Ctnnb1, Map2k1, Mdm2, NFkB1, Pdgfa). Pathway analysis (apoptosis signaling and checkpoint regulation) was used to map relationships among the cancer–related genes. The results showed that a relatively short mission in space had a significant impact on both organs. The findings also indicate that immune system aberrations due to stressors associated with space travel should be included when estimating risk for pathologies such as cancer and infection and in designing appropriate countermeasures. Although this was the historic last flight of NASA’s Space Shuttle Program, exploration of space will undoubtedly continue.
Collapse
Affiliation(s)
- Daila S. Gridley
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Louis S. Stodieck
- BioServe Space Technologies, Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, United States of America
| | - Virginia L. Ferguson
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado, United States of America
| | - Ted A. Bateman
- Department of Bioengineering, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Maria Moldovan
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Christopher E. Cunningham
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Tamako A. Jones
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Jerry M. Slater
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Michael J. Pecaut
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| |
Collapse
|
11
|
Abstract
Experiments conducted in the microgravity environment of space are not typically at the forefront of the mind of a cancer biologist. However, space provides physical conditions that are not achievable on Earth, as well as conditions that can be exploited to study mechanisms and pathways that control cell growth and function. Over the past four decades, studies have shown how exposure to microgravity alters biological processes that may be relevant to cancer. In this Review, we explore the influence of microgravity on cell biology, focusing on tumour cells grown in space together with work carried out using models in ground-based investigations.
Collapse
|