1
|
Zheng J, Liu G, Wu C, Jia G, Zhao H, Chen X, Wang J. Effect of calcium-sensing receptor on the migration and proliferation of porcine intestinal epithelial cells. Anim Biotechnol 2021; 34:365-374. [PMID: 34459707 DOI: 10.1080/10495398.2021.1968885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The rapid healing of impaired intestinal surface plays a role in maintaining intestinal homeostasis. This study investigated the effect of calcium-sensing receptor (CaSR) on the migration and proliferation of intestinal porcine epithelial cells (IPEC-J2). Results showed that cell migration area and width were increased by R568 (CaSR activator) and decreased by NPS2143 (CaSR inhibitor). The protein level of GTP-rac1 and the phosphorylation of phospholipase C gamma 1 (PLCγ1) were increased by 2 µM R568. Furthermore, R568 + 120 µM NSC23766 (Rac1 inhibitor) and R568 + 1 µM U73122 (PLCγ1 inhibitor) decreased the protein level of GTP-rac1 and the phosphorylated PLCγ1, respectively, and both inhibited cell migration compared with R568. In addition, spermine increased the protein expression levels of CaSR and the levels of GTP-rac1 and the phosphorylated PLCγ1 and thereby promoted the migration of IPEC-J2 cells. Moreover, R568 improved the proliferation of the IPEC-J2 cells. Spermine increased cell proliferation, but NPS2143 incubated with spermine decreased cell proliferation compared with the spermine group. This study suggests that CaSR activation increased cell migration by activating Rac1 and PLCγ1 signaling and improved cell proliferation, and both effects were regulated by spermine by activating CaSR.
Collapse
Affiliation(s)
- Jie Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Hasan LK, Aljabban J, Rohr M, Mukhtar M, Adapa N, Salim R, Aljabban N, Syed S, Syed S, Panahiazar M, Hadley D, Jarjour W. Metaanalysis Reveals Genetic Correlates of Osteoporosis Pathogenesis. J Rheumatol 2020; 48:940-945. [PMID: 33262303 DOI: 10.3899/jrheum.200951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Osteoporosis is a growing healthcare burden. By identifying osteoporosis-promoting genetic variations, we can spotlight targets for new pharmacologic therapies that will improve patient outcomes. In this metaanalysis, we analyzed mesenchymal stem cell (MSC) biomarkers in patients with osteoporosis. METHODS We employed our Search Tag Analyze Resource for the Gene Expression Omnibus (STARGEO) platform to conduct a metaanalysis to define osteoporosis pathogenesis. We compared 15 osteoporotic and 14 healthy control MSC samples. We then analyzed the genetic signature in Ingenuity Pathway Analysis. RESULTS The top canonical pathways identified that were statistically significant included the serine peptidase inhibitor kazal type 1 pancreatic cancer pathway, calcium signaling, pancreatic adenocarcinoma signaling, axonal guidance signaling, and glutamate receptor signaling. Upstream regulators involved in this disease process included ESR1, dexamethasone, CTNNβ1, CREB1, and ERBB2. CONCLUSION Although there has been extensive research looking at the genetic basis for inflammatory arthritis, very little literature currently exists that has identified genetic pathways contributing to osteoporosis. Our study has identified several important genes involved in osteoporosis pathogenesis including ESR1, CTNNβ1, CREB1, and ERBB2. ESR1 has been shown to have numerous polymorphisms, which may play a prominent role in osteoporosis. The Wnt pathway, which includes the CTNNβ1 gene identified in our study, plays a prominent role in bone mass regulation. Wnt pathway polymorphisms can increase susceptibility to osteoporosis. Our analysis also suggests a potential mechanism for ERBB2 in osteoporosis through Semaphorin 4D (SEMA4D). Our metaanalysis identifies several genes and pathways that can be targeted to develop new anabolic drugs for osteoporosis treatment.
Collapse
Affiliation(s)
- Laith K Hasan
- L.K. Hasan, BBA, Tulane University School of Medicine, New Orleans, Lousiana;
| | - Jihad Aljabban
- J. Aljabban, MD, MMSc, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Michael Rohr
- M. Rohr, BS, D. Hadley, MD, PhD, University of Central Florida College of Medicine, Orlando, Florida
| | - Mohamed Mukhtar
- M. Mukhtar, BS, Michigan State University College of Medicine, Lansing, Michigan
| | - Nikhil Adapa
- N. Adapa, MD, State University of New York Upstate Medical University, Syracuse, New York
| | - Rahaf Salim
- R. Salim, BS, Case Western University, Cleveland, Ohio
| | - Nabeal Aljabban
- N. Aljabban, BS, Penn State College of Medicine, Hershey, Pennsylvania
| | - Saad Syed
- S. Syed, BS, S. Syed, MD, Stanford University School of Medicine, Palo Alto, California
| | - Sharjeel Syed
- S. Syed, BS, S. Syed, MD, Stanford University School of Medicine, Palo Alto, California
| | - Maryam Panahiazar
- M. Panahiazar, PhD, University of California San Francisco, San Francisco, California
| | - Dexter Hadley
- M. Rohr, BS, D. Hadley, MD, PhD, University of Central Florida College of Medicine, Orlando, Florida
| | - Wael Jarjour
- W. Jarjour, MD, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
3
|
Zhao X, Alqwbani M, Luo Y, Chen C, A G, Wei Y, Li D, Wang Q, Tian M, Kang P. Glucocorticoids decreased Cx43 expression in osteonecrosis of femoral head: The effect on proliferation and osteogenic differentiation of rat BMSCs. J Cell Mol Med 2020; 25:484-498. [PMID: 33205619 PMCID: PMC7810924 DOI: 10.1111/jcmm.16103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/10/2020] [Accepted: 11/01/2020] [Indexed: 02/05/2023] Open
Abstract
Glucocorticoid (GC)‐induced osteonecrosis of the femoral head (GC‐ONFH) is considered as one of the most serious side effects of long‐term or over‐dose steroid therapy. However, the underlying cause mechanisms are still not fully investigated. We firstly established a rat model of GC‐ONFH and injected lipopolysaccharide (LPS) and methylprednisolone (MPS). We found that the expressions of Cx43, Runx2, ALP and COLⅠ were more decreased than the normal group. Secondly, the isolated rat bone marrow stem cells (BMSCs) were treated with dexamethasone (Dex) in vitro, and the expressions of Cx43, Runx2, ALP and COLⅠ were decreased significantly. Moreover, the results of immunofluorescence staining, alizarin red staining, EdU assay and CCK8 showed that the osteogenic differentiation and the proliferation capacity of BMSCs were decreased after induced by Dex. A plasmid of lentivirus‐mediated Cx43 (Lv‐Cx43) gene overexpression was established to investigate the function of Cx43 in BMSCs under the Dex treatment. Findings demonstrated that the proliferation and osteogenic differentiation abilities were enhanced after Lv‐Cx43 transfected to BMSCs, and these beneficial effects of Lv‐Cx43 were significantly blocked when PD988059 (an inhibitor of ERK1/2) was used. In conclusion, the overexpression of Cx43 could promote the proliferation and osteogenic differentiation of BMSCs via activating the ERK1/2 signalling pathway, which provide a basic evidence for further study on the detailed function of Cx43 in GC‐ONFH.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mohammed Alqwbani
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Luo
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Changjun Chen
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ge A
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wei
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Donghai Li
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuru Wang
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Tian
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Pengde Kang
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Hu Q, Huang L, Zhao C, Shen Y, Zheng XF, Wang Y, Zhou CH, Wu YQ. Ca 2+-PKCα-ERK1/2 signaling pathway is involved in the suppressive effect of propofol on proliferation of neural stem cells from the neonatal rat hippocampus. Brain Res Bull 2019; 149:148-155. [PMID: 31002911 DOI: 10.1016/j.brainresbull.2019.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/31/2018] [Accepted: 04/09/2019] [Indexed: 11/17/2022]
Abstract
Neonatal exposure to propofol induces persistent behavioral abnormalities in adulthood. In addition to triggering the apoptosis of neurons in the developing brain, anesthetics may contribute to the development of cognitive deficits by interfering neurogenesis. Given the importance of neural stem cell (NSC) proliferation in neurogenesis, the effect of propofol on NSC proliferation and the mechanisms underlying this effect were investigated. Hippocampal NSC proliferation from neonatal rats was examined using 5-bromo-2'-deoxyuridine incorporation assays in vitro. The [Ca2+]i was analyzed using flow cytometry. The activations of protein kinase C (PKC)-α and extracellular signal-regulated kinases 1/2 (ERK1/2) were measured by western blot. Our results showed that propofol significantly inhibited NSC proliferation in vitro. [Ca2+]i and activations of PKCα and ERK1/2 in NSCs were markedly suppressed by propofol (5, 10, 20, 40 and 80 μM). Ca2+ channel blocker verapamil, PKCα inhibitor chelerythrine and ERK1/2 kinase inhibitor PD98059 exerted their maximal effects on NSC function at concentrations of 20, 10 and 20 μM, respectively. Propofol (20 μM) could not produce further additional suppression effects when used in combination with verapamil (20 μM), chelerythrine (10 μM) or PD98059 (20 μM). In addition, phorbol-12-myristate-13-acetate (PMA, a activator of PKC) markedly attenuated the suppressive effects of propofol on ERK1/2 phosphorylation and NSC proliferation. The inhibition effects on PKCα activation, ERK1/2 phosphorylation and NSC proliferation induced by propofol were significantly improved by BayK8644 (a calcium channel agonist). These results indicate that propofol can inhibits hippocampal NSC proliferation by suppressing the Ca2+-PKCα-ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Qian Hu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Li Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China; Department of Pharmacy, Women & Infants Hospital of Zhengzhou, Zhengzhou, PR China
| | - Chao Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Ying Shen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Xiao-Feng Zheng
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Yu Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Cheng-Hua Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China.
| |
Collapse
|
5
|
Intracellular Calcium Determines the Adipogenic Differentiation Potential of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells via the Wnt5a/ β-Catenin Signaling Pathway. Stem Cells Int 2018; 2018:6545071. [PMID: 30123291 PMCID: PMC6079381 DOI: 10.1155/2018/6545071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells- (MSCs-) based therapies show different degrees of efficacies for the treatment of various diseases, including lipogenesis. We evaluated the adipogenic differentiation ability of human umbilical cord blood-derived MSCs (hUCB-MSCs) from different donors and examined the contribution of the intracellular calcium (Ca2+) level to this diversity. hUCB-MSCs treated with Ca2+ or the Ca2+ chelator BAPTA-AM increased and decreased adipogenic differentiation, respectively. Canonical Wnt5a/β-catenin expression decreased during adipogenic differentiation of hUCB-MSCs. Treatment with Wnt5a blocked the adipogenic differentiation of hUCB-MSCs and activated the Wnt pathway, with a decrease in the adipogenesis markers PPARγ and leptin, and reduced lipid vacuole-associated Oil red O activity. In contrast, inhibition of the Wnt pathway with dickkopf-1 and β-catenin small interfering RNA transfection promoted the adipogenic potential of hUCB-MSCs. Interestingly, the Ca2+-based system exhibited a synergic effect on adipogenic potential through the Wnt5a/β-catenin pathway. Our data suggest that the variable adipogenic differentiation potential of hUCB-MSCs from different lots is due to variation in the intracellular Ca2+ level, which can be used as a marker to predict hUCB-MSCs selection for lipogenesis therapy. Overall, these results demonstrate that exogenous calcium treatment enhanced the adipogenic differentiation of hUCB-MSCs via negatively regulating the Wnt5a/β-catenin signaling pathway.
Collapse
|
6
|
Zhang X, Zhu Y, Cao L, Wang X, Zheng A, Chang J, Wu J, Wen J, Jiang X, Li H, Zhang Z. Alginate-aker injectable composite hydrogels promoted irregular bone regeneration through stem cell recruitment and osteogenic differentiation. J Mater Chem B 2018; 6:1951-1964. [DOI: 10.1039/c7tb03315j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With SAG usage, the hBMSC migration ability was stimulated through CXCR4 elevation while osteogenic differentiation was promotedviathe ERK signaling pathway.
Collapse
|
7
|
Choi W, Kwon SJ, Jin HJ, Jeong SY, Choi SJ, Oh W, Yang YS, Jeon HB, Jeon ES. Optimization of culture conditions for rapid clinical-scale expansion of human umbilical cord blood-derived mesenchymal stem cells. Clin Transl Med 2017; 6:38. [PMID: 29019171 PMCID: PMC5634990 DOI: 10.1186/s40169-017-0168-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have broad-spectrum therapeutic effects in various diseases, and thus have many clinical applications. However, it is difficult to produce sufficient numbers of MSCs for clinical use, and improved culture systems are required. Here, we report the effects of calcium (Ca2+) and hypoxia on the proliferation of human umbilical cord blood-derived MSCs (hUCB-MSCs). In addition, we determined the optimal conditions of these two factors for the large-scale culture of hUCB-MSCs. Methods hUCB-MSCs were maintained under hypoxic conditions (3% O2) with 1.8 mM Ca2+ during long-term culture, and their proliferation was evaluated. To characterize the underlying mechanisms, the effects on hypoxia-inducible factor (HIF)-1α and the extracellular signal-regulated kinase (ERK) signaling pathways were investigated. The therapeutic effects in a mouse emphysema model were analyzed and compared with those of naive MSCs. Results The proliferation of Ca2+/hypoxia-treated hUCB-MSCs was increased compared with that observed using either calcium or hypoxia culture alone, without loss of stem cell marker expression or differentiation ability. The enhancement of the proliferation capacity of hUCB-MSCs by the synergistic effects of Ca2+ and hypoxia was dependent on the expression of HIF-1α and the ERK signaling pathway. The proliferation of Ca2+/hypoxia-treated hUCB-MSCs resulted in a delayed senescence phenotype and increased the expression levels of stemness genes such as Oct4 and Nanog compared to those observed in conventional culture conditions. In addition, Ca2+/hypoxia-treated MSCs transplantation in the mouse emphysema model showed the same therapeutic effects as observed with naive MSCs. Conclusions These findings suggest that a Ca2+/hypoxia-based expansion system has applications for the large-scale production of MSCs for therapeutic purposes. Electronic supplementary material The online version of this article (doi:10.1186/s40169-017-0168-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wankyu Choi
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., 21 Daewangpangyo-ro 644beon-gil, Bundang-gu, Seongnam-Si, Gyeonggi-do, 13494, Republic of Korea
| | - Soon-Jae Kwon
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., 21 Daewangpangyo-ro 644beon-gil, Bundang-gu, Seongnam-Si, Gyeonggi-do, 13494, Republic of Korea
| | - Hye Jin Jin
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., 21 Daewangpangyo-ro 644beon-gil, Bundang-gu, Seongnam-Si, Gyeonggi-do, 13494, Republic of Korea
| | - Sang Young Jeong
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., 21 Daewangpangyo-ro 644beon-gil, Bundang-gu, Seongnam-Si, Gyeonggi-do, 13494, Republic of Korea
| | - Soo Jin Choi
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., 21 Daewangpangyo-ro 644beon-gil, Bundang-gu, Seongnam-Si, Gyeonggi-do, 13494, Republic of Korea
| | - Wonil Oh
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., 21 Daewangpangyo-ro 644beon-gil, Bundang-gu, Seongnam-Si, Gyeonggi-do, 13494, Republic of Korea
| | - Yoon Sun Yang
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., 21 Daewangpangyo-ro 644beon-gil, Bundang-gu, Seongnam-Si, Gyeonggi-do, 13494, Republic of Korea
| | - Hong Bae Jeon
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., 21 Daewangpangyo-ro 644beon-gil, Bundang-gu, Seongnam-Si, Gyeonggi-do, 13494, Republic of Korea
| | - Eun Su Jeon
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., 21 Daewangpangyo-ro 644beon-gil, Bundang-gu, Seongnam-Si, Gyeonggi-do, 13494, Republic of Korea.
| |
Collapse
|
8
|
Zhang F, Wang C, Lin J, Wang X. Oxidized low-density lipoprotein (ox-LDL) promotes cardiac differentiation of bone marrow mesenchymal stem cells via activating ERK1/2 signaling. Cardiovasc Ther 2017; 35. [PMID: 28880487 DOI: 10.1111/1755-5922.12305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/16/2017] [Accepted: 09/02/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIMS The differentiation efficiency of bone marrow mesenchymal stem cells (BM-MSCs) is low in vivo after transplantation. Therefore, it is necessary to look for effective reagents for enhancing cardiac differentiation of BM-MSCs. It has been reported that cardiac differentiation of stem cells depends on the activation of extracellular signal-regulated protein 1/2 (ERK1/2) signaling. Oxidized low-density lipoprotein (ox-LDL) is a potent reagent for ERK1/2 activation. This indicates that ox-LDL may be a potential reagent to stimulate cardiac differentiation of stem cells. In this study, we investigated the effect of ox-LDL on cardiac differentiation of BM-MSCs and its relationship with ERK1/2 signaling. METHODS BM-MSCs were isolated from mouse bone marrow, cultured in DMEM supplemented with 15% FBS, and passaged up to the 3rd passage. Following culture with 5 μg/mL ox-LDL for 3 weeks, the cardiac differentiation of the 3rd passage BM-MSCs was identified by immunostaining, Western blotting, and RT-PCR assays for measuring the expression of cardiac-specific markers. To further explore the role of ERK1/2 signaling in cardiac differentiation of BM-MSCs, we simultaneously exposed BM-MSCs to ERK1/2 inhibitor (U0126) and ox-LDL, and identified the cardiac differentiation again. RESULTS The expressions of cardiac-specific markers including α-cardiac actin, α-MHC, β-MHC, ANP, and BNP were markedly increased in BM-MSCs following treatment with ox-LDL (P < .05), which indicates a directional differentiation of BM-MSCs to cardiac cells. Further, ox-LDL could also activate ERK1/2 in BM-MSCs, and application of U0126 markedly inhibited ox-LDL-induced cardiac transformation of BM-MSCs. CONCLUSIONS Ox-LDL induces cardiac differentiation of BM-MSCs via activation of ERK1/2 signaling.
Collapse
Affiliation(s)
- Fenxi Zhang
- Stem Cell and Biotheraphy Technology Research Center, Xinxiang Medical University, Xinxiang, China
| | - Congrui Wang
- Stem Cell and Biotheraphy Technology Research Center, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cell and Biotheraphy Technology Research Center, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Stem Cell and Biotheraphy Technology Research Center, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
9
|
Bravo-Sagua R, Mattar P, Díaz X, Lavandero S, Cifuentes M. Calcium Sensing Receptor as a Novel Mediator of Adipose Tissue Dysfunction: Mechanisms and Potential Clinical Implications. Front Physiol 2016; 7:395. [PMID: 27660614 PMCID: PMC5014866 DOI: 10.3389/fphys.2016.00395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023] Open
Abstract
Obesity is currently a serious worldwide public health problem, reaching pandemic levels. For decades, dietary and behavioral approaches have failed to prevent this disease from expanding, and health authorities are challenged by the elevated prevalence of co-morbid conditions. Understanding how obesity-associated diseases develop from a basic science approach is recognized as an urgent task to face this growing problem. White adipose tissue (WAT) is an active endocrine organ, with a crucial influence on whole-body homeostasis. WAT dysfunction plays a key role linking obesity with its associated diseases such as type 2 diabetes mellitus, cardiovascular disease, and some cancers. Among the regulators of WAT physiology, the calcium-sensing receptor (CaSR) has arisen as a potential mediator of WAT dysfunction. Expression of the receptor has been described in human preadipocytes, adipocytes, and the human adipose cell lines LS14 and SW872. The evidence suggests that CaSR activation in the visceral (i.e., unhealthy) WAT is associated with an increased proliferation of adipose progenitor cells and elevated adipocyte differentiation. In addition, exposure of adipose cells to CaSR activators in vitro elevates proinflammatory cytokine expression and secretion. An increased proinflammatory environment in WAT plays a key role in the development of WAT dysfunction that leads to peripheral organ fat deposition and insulin resistance, among other consequences. We propose that CaSR may be one relevant therapeutic target in the struggle to confront the health consequences of the current worldwide obesity pandemic.
Collapse
Affiliation(s)
- Roberto Bravo-Sagua
- Institute of Nutrition and Food Technology, University of ChileSantiago, Chile; Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, University of ChileSantiago, Chile
| | - Pamela Mattar
- Institute of Nutrition and Food Technology, University of ChileSantiago, Chile; Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, University of ChileSantiago, Chile
| | - Ximena Díaz
- Institute of Nutrition and Food Technology, University of Chile Santiago, Chile
| | - Sergio Lavandero
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell, University of ChileSantiago, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Mariana Cifuentes
- Institute of Nutrition and Food Technology, University of Chile Santiago, Chile
| |
Collapse
|
10
|
Enhanced Proliferation of Porcine Bone Marrow Mesenchymal Stem Cells Induced by Extracellular Calcium is Associated with the Activation of the Calcium-Sensing Receptor and ERK Signaling Pathway. Stem Cells Int 2016; 2016:6570671. [PMID: 27123007 PMCID: PMC4829725 DOI: 10.1155/2016/6570671] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/02/2016] [Accepted: 03/17/2016] [Indexed: 12/22/2022] Open
Abstract
Porcine bone marrow mesenchymal stem cells (pBMSCs) have the potential for application in regenerative medicine. This study aims to investigate the effects of extracellular calcium ([Ca2+]o) on pBMSCs proliferation and to explore the possible underlying mechanisms. The results demonstrated that 4 mM [Ca2+]o significantly promoted pBMSCs proliferation by reducing the G0/G1 phase cell percentage and by increasing the S phase cell proportion and the proliferation index of pBMSCs. Accordingly, [Ca2+]o stimulated the expression levels of proliferative genes such as cyclin A2, cyclin D1/3, cyclin E2, and PCNA and inhibited the expression of p21. In addition, [Ca2+]o resulted in a significant elevation of intracellular calcium and an increased ratio of p-ERK/ERK. However, inhibition of calcium-sensing receptor (CaSR) by its antagonist NPS2143 abolished the aforementioned effects of [Ca2+]o. Moreover, [Ca2+]o-induced promotion of pBMSCs proliferation, the changes of proliferative genes expression levels, and the activation of ERK1/2 signaling pathway were effectively blocked by U0126, a selective ERK kinase inhibitor. In conclusion, our findings provided evidence that the enhanced pBMSCs proliferation in response to [Ca2+]o was associated with the activation of CaSR and ERK1/2 signaling pathway, which may be useful for the application of pBMSCs in future clinical studies aimed at tissue regeneration and repair.
Collapse
|
11
|
Rocha G, Villalobos E, Fuentes C, Villarroel P, Reyes M, Díaz X, Mattar P, Cifuentes M. Preadipocyte proliferation is elevated by calcium sensing receptor activation. Mol Cell Endocrinol 2015; 412:251-6. [PMID: 25986659 DOI: 10.1016/j.mce.2015.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 01/13/2023]
Abstract
Obesity is a major worldwide problem, despite considerable efforts against it. While excess body fat defines obesity, adipose tissue quality and functionality are key to whether cardiovascular and metabolic comorbidities develop. Adipose tissue cellular composition can vary considerably, and excess adipocyte progenitors (preadipocytes) is associated with obesity. We have proposed that calcium sensing receptor (CaSR) activation in adipose tissue leads to dysfunction. This study evaluated whether CaSR activation elevates preadipocyte proliferation. Human LS14 preadipocytes were exposed to CaSR activators cinacalcet (2 µM), GdCl3 (5 µM) and spermine (1 µM), and cell viability was evaluated after 72h. CaSR activators elevated proliferation by 19-24%, and CaSR silencing (siRNA) abolished the effect. Cinacalcet elevated phospho-ERK1/2 content, and upstream inhibition of ERK1/2 phosphorylation reverted cinacalcet-induced proliferation. Cinacalcet also elevated expression of the proinflammatory factors IL1β, IL6 and CCL2. The results suggest that CaSR induces preadipocyte proliferation, partly through ERK1/2 activation. Considering reported proinflammatory and adipogenic CaSR effects, excess preadipocyte proliferation further supports the dysfunctional effect of CaSR in obesity.
Collapse
Affiliation(s)
- Gladys Rocha
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, El Líbano 5524, Macul, Casilla 138-11, Santiago, Chile
| | - Elisa Villalobos
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, El Líbano 5524, Macul, Casilla 138-11, Santiago, Chile
| | - Cecilia Fuentes
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, El Líbano 5524, Macul, Casilla 138-11, Santiago, Chile
| | - Pia Villarroel
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, El Líbano 5524, Macul, Casilla 138-11, Santiago, Chile
| | - Marcela Reyes
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, El Líbano 5524, Macul, Casilla 138-11, Santiago, Chile
| | - Ximena Díaz
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, El Líbano 5524, Macul, Casilla 138-11, Santiago, Chile
| | - Pamela Mattar
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, El Líbano 5524, Macul, Casilla 138-11, Santiago, Chile
| | - Mariana Cifuentes
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, El Líbano 5524, Macul, Casilla 138-11, Santiago, Chile.
| |
Collapse
|
12
|
Huang S, Ren Y, Wang P, Li Y, Wang X, Zhuang H, Fang R, Wang Y, Liu N, Hehir M, Zhou JX. Transcription Factor CREB is Involved in CaSR-mediated Cytoskeleton Gene Expression. Anat Rec (Hoboken) 2014; 298:501-12. [PMID: 25382680 DOI: 10.1002/ar.23089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 09/13/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Shuaishuai Huang
- Department of Medical School; Ningbo University; Ningbo 315211 China
- Department of the Center for Translational Medicine; The Affiliated Hospital, Ningbo University School of Medicine; Ningbo 315020 China
| | - Yu Ren
- Department of Urologic Surgery; Ningbo Urology and Nephrology Hospital, Ningbo University; Ningbo 315000 China
| | - Ping Wang
- Department of Medical School; Ningbo University; Ningbo 315211 China
- Department of the Center for Translational Medicine; The Affiliated Hospital, Ningbo University School of Medicine; Ningbo 315020 China
| | - Yanyuan Li
- Department of Pathology; First Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou P.R.310003 China
| | - Xue Wang
- Department of Medical School; Ningbo University; Ningbo 315211 China
- Department of the Center for Translational Medicine; The Affiliated Hospital, Ningbo University School of Medicine; Ningbo 315020 China
| | - Haihui Zhuang
- Department of Medical School; Ningbo University; Ningbo 315211 China
- Department of the Center for Translational Medicine; The Affiliated Hospital, Ningbo University School of Medicine; Ningbo 315020 China
| | - Rong Fang
- Department of Medical School; Ningbo University; Ningbo 315211 China
- Department of the Center for Translational Medicine; The Affiliated Hospital, Ningbo University School of Medicine; Ningbo 315020 China
| | - Yuduo Wang
- Department of Medical School; Ningbo University; Ningbo 315211 China
| | - Ningsheng Liu
- Department of Medical School; Ningbo University; Ningbo 315211 China
| | - Michael Hehir
- Department of Medical School; Ningbo University; Ningbo 315211 China
- Department of the Center for Translational Medicine; The Affiliated Hospital, Ningbo University School of Medicine; Ningbo 315020 China
| | - Jeff X. Zhou
- Department of Medical School; Ningbo University; Ningbo 315211 China
- Department of the Center for Translational Medicine; The Affiliated Hospital, Ningbo University School of Medicine; Ningbo 315020 China
| |
Collapse
|
13
|
González-Vázquez A, Planell JA, Engel E. Extracellular calcium and CaSR drive osteoinduction in mesenchymal stromal cells. Acta Biomater 2014; 10:2824-33. [PMID: 24525034 DOI: 10.1016/j.actbio.2014.02.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/10/2014] [Accepted: 02/03/2014] [Indexed: 12/12/2022]
Abstract
Bone is the main store of calcium and progenitor cells in the body. During the resorption process, the local calcium concentration reaches 8-40mM, and the surrounding cells are exposed to these fluctuations in calcium. This stimulus is a signal that is detected through the calcium sensing receptor (CaSR), which modulates chemotactic and proliferative G protein-dependent signaling pathways. The objective of the present work is to evaluate the roles of extracellular calcium ([Ca(2+)]o) and the CaSR in osteoinduction. Rat bone marrow mesenchymal stromal cells (rBMSCs) were stimulated with 10mM of Ca(2+). Several experiments were conducted to demonstrate the effect of [Ca(2+)]o on chemotaxis, proliferation and differentiation on the osteoblastic lineage. It was found that [Ca(2+)]o induces rBMSCs to migrate and proliferate in a concentration-dependent manner. Real-time polymerase chain reaction and immunofluorescence also revealed that 10mM Ca(2+) stimulates overexpression of osteogenic markers in rBMSCs, including alkaline phosphatase (ALP), bone sialoprotein, collagen Ia1 and osteocalcin. Functional assays determining ALP activity and mineralization tests both corroborate the increased expression of these markers in rBMSCs stimulated with Ca(2+). Moreover, CaSR blockage inhibited the cellular response to stimulation with high concentrations of [Ca(2+)]o, revealing that the CaSR is a key modulator of these cellular responses.
Collapse
Affiliation(s)
- Arlyng González-Vázquez
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia, Baldiri Reixac 15-21, Barcelona 08028, Spain; CIBER-BBN, María de Luna 11, Zaragoza 50118, Spain
| | - Josep A Planell
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia, Baldiri Reixac 15-21, Barcelona 08028, Spain; CIBER-BBN, María de Luna 11, Zaragoza 50118, Spain
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia, Baldiri Reixac 15-21, Barcelona 08028, Spain; Technical University of Catalonia, Av. Diagonal 647, Barcelona 08028, Spain; CIBER-BBN, María de Luna 11, Zaragoza 50118, Spain.
| |
Collapse
|
14
|
The roles of calcium-sensing receptor and calcium channel in osteogenic differentiation of undifferentiated periodontal ligament cells. Cell Tissue Res 2014; 357:707-18. [PMID: 24842051 DOI: 10.1007/s00441-014-1918-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/27/2014] [Indexed: 10/25/2022]
Abstract
Elevated extracellular calcium has been shown to promote the differentiation of osteoblasts. However, the way that calcium affects the osteogenic differentiation of human periodontal ligament stem/progenitor cells (PDLSCs) remains unclear. Our aim has been to investigate the proliferation and osteogenic differentiation of a calcium-exposed human PDLSC line (cell line 1-17) that we have recently established and to elucidate the roles of the calcium-sensing receptor (CaSR) and L-type voltage-dependent calcium channel (L-VDCC) in this process. Proliferation activity was investigated by WST-1 assay, and gene and protein expression was examined by quantitative reverse transcriptase plus the polymerase chain reaction and immunostaining, respectively. Calcification assay was performed by von Kossa and Alizarin red staining. Treatment with 5 mM CaCl2 significantly induced proliferation, bone-related gene expression, and calcification in cell line 1-17. During culture with 5 mM CaCl2, this cell line up-regulated the gene expression of CaSR, which was reduced after 7 days. Simultaneous treatment with NPS2143, a CaSR inhibitor, and calcium significantly further increased bone-related gene expression and calcification as compared with CaCl2 exposure alone. The L-VDCC inhibitor, nifedipine, significantly suppressed osteogenic differentiation of cell line 1-17 treated with 5 mM CaCl2 and promoted the expression of CaSR, as compared with calcium treatment alone. Thus, elevated extracellular calcium promotes the proliferation and osteogenic differentiation of a PDLSC line. Antagonizing CaSR further enhances the effect of calcium on osteogenic differentiation, with CaSR expression being regulated by L-VDCC under extracellular calcium. Extracellular calcium might therefore modulate the osteogenic differentiation of PDLSCs through reciprocal adjustments of CaSR and L-VDCC.
Collapse
|
15
|
Tian H, Guo M, Zhuang Y, Chu J, Zhang S. Enhanced proliferation of bone marrow mesenchymal stem cells by co-culture with TM4 mouse Sertoli cells: involvement of the EGF/PI3K/AKT pathway. Mol Cell Biochem 2014; 393:155-64. [PMID: 24748323 DOI: 10.1007/s11010-014-2055-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/03/2014] [Indexed: 01/23/2023]
Abstract
Bone marrow mesenchymal stem cells (BM-MSCs) are considered as a promising option in the field of regenerative medicine and tissue engineering. However, little is known about how TM4 mouse Sertoli cells, which are known to enhance stem cells proliferation in co-culture, may influence the proliferation of BM-MSCs and which signaling pathways are involved in. To address these questions, an in vitro transwell system was used. We found that TM4 cells could produce soluble factors which enhanced the growth of BM-MSCs without inhibiting the multipotency. Furthermore, cell cycle analysis showed that co-culture with the TM4 cells accelerated the progress of BM-MSCs from the G1 to the S phase. The expression of the phospho-akt, mdm2, as well as pho-CDC2, and cyclin D1 were markedly upregulated in co-cultured BM-MSCs. The observed promoting effect was significantly inhibited by the administration of the PI3K/AKT inhibitor, LY294002. Among the various growth factors produced by TM4 cells, the epithelial growth factor (EGF) stimulated the proliferation of the BM-MSCs more significantly compared with the other growth factors examined in this study. Neutralization of EGF via a blocking antibody significantly limited the promoting growth effect in BM-MSCs. These results suggest that TM4 cells provide a favorable in vitro environment for BM-MSCs growth and imply the involvement of the EGF/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Huan Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. Box 329, 130 Meilong Rd, Shanghai, 200237, P.R. China
| | | | | | | | | |
Collapse
|