1
|
Dell’Aversana E, Cirillo V, Van Oosten MJ, Di Stasio E, Saiano K, Woodrow P, Ciarmiello LF, Maggio A, Carillo P. Ascophyllum nodosum Based Extracts Counteract Salinity Stress in Tomato by Remodeling Leaf Nitrogen Metabolism. PLANTS 2021; 10:plants10061044. [PMID: 34064272 PMCID: PMC8224312 DOI: 10.3390/plants10061044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/25/2023]
Abstract
Biostimulants have rapidly and widely been adopted as growth enhancers and stress protectants in agriculture, however, due to the complex nature of these products, their mechanism of action is not clearly understood. By using two algal based commercial biostimulants in combination with the Solanum lycopersicum cv. MicroTom model system, we assessed how the modulation of nitrogen metabolites and potassium levels could contribute to mediate physiological mechanisms that are known to occur in response to salt/and or osmotic stress. Here we provide evidence that the reshaping of amino acid metabolism can work as a functional effector, coordinating ion homeostasis, osmotic adjustment and scavenging of reactive oxygen species under increased osmotic stress in MicroTom plant cells. The Superfifty biostimulant is responsible for a minor amino acid rich-phenotype and could represent an interesting instrument to untangle nitrogen metabolism dynamics in response to salinity and/or osmotic stress.
Collapse
Affiliation(s)
- Emilia Dell’Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Michael James Van Oosten
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Emilio Di Stasio
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Katya Saiano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Pasqualina Woodrow
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Loredana Filomena Ciarmiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
- Correspondence: ; Tel.: +39-0823-274562
| |
Collapse
|
2
|
Ferchichi S, Hessini K, Dell Aversana E, D Amelia L, Woodrow P, Ciarmiello LF, Fuggi A, Carillo P. Hordeum vulgare and Hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:1096-1109. [PMID: 32290971 DOI: 10.1071/fp18046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/21/2018] [Indexed: 05/27/2023]
Abstract
Hordeum maritimum With. (= H. marinum Huds. subsp. marinum, 2n=14) is a wild cereal present in the saline depressions of the Soliman and Kelbia Sebkhas, which contributes significantly to annual biomass production in Tunisia. This species is able to tolerate high NaCl concentrations at the seedling stage without showing symptoms of toxicity; however, the tolerance strategy mechanisms of this plant have not yet been unravelled. Our metabolite analysis, performed on leaves of H. maritimum during extended stress in comparison with Hordeum vulgare L. cv. Lamsi, has revealed an adaptive response of the wild species based on a different temporal accumulation pattern of ions and compatible metabolites. Further, wild and cultivated genotypes with contrasting salt-tolerant behaviour display different pattern of metabolites when salt stress is prolonged over 2 weeks. In particular, when exposed to up to 3 weeks of 200mM NaCl salt stress, H. maritimum is able to maintain lower leaf concentrations of sodium and chloride, and higher concentrations of potassium compared with H. vulgare. This likely restricts sodium entry into plants at the root level, and uses the toxic ions, glycine betaine and low levels of proline for osmotic adjustment. Under prolonged stress, the accumulation of proline increases, reaching the highest levels in concomitance with the decrease of potassium to sodium ratio, the increase of hydrogen peroxide and decrease of chlorophylls. The modulation of proline accumulation over time can be interpreted as an adaptive response to long-term salinity. Moreover, once synthetised glycine betaine is transported but not metabolised, it can contribute together with proline to osmotically balance H. maritimum leaves and protect them from oxidative stress. The 2-3 week delay of H. maritimum in showing the symptoms of stress and damages compared with H. vulgare could be important in the survival of plants when soil salinity is not a permanent condition, but just a transient state of stress.
Collapse
Affiliation(s)
- Selma Ferchichi
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, University of Elmanar, B.P. 901, Hammam-Lif 2050, Tunisia
| | - Kamel Hessini
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, University of Elmanar, B.P. 901, Hammam-Lif 2050, Tunisia
| | - Emilia Dell Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Luisa D Amelia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Pasqualina Woodrow
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Loredana F Ciarmiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Amodio Fuggi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
3
|
Woodrow P, Ciarmiello LF, Annunziata MG, Pacifico S, Iannuzzi F, Mirto A, D'Amelia L, Dell'Aversana E, Piccolella S, Fuggi A, Carillo P. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. PHYSIOLOGIA PLANTARUM 2017; 159:290-312. [PMID: 27653956 DOI: 10.1111/ppl.12513] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/22/2016] [Accepted: 09/07/2016] [Indexed: 05/03/2023]
Abstract
Durum wheat plants are extremely sensitive to drought and salinity during seedling and early development stages. Their responses to stresses have been extensively studied to provide new metabolic targets and improving the tolerance to adverse environments. Most of these studies have been performed in growth chambers under low light [300-350 µmol m-2 s-1 photosynthetically active radiation (PAR), LL]. However, in nature plants have to face frequent fluctuations of light intensities that often exceed their photosynthetic capacity (900-2000 µmol m-2 s-1 ). In this study we investigated the physiological and metabolic changes potentially involved in osmotic adjustment and antioxidant defense in durum wheat seedlings under high light (HL) and salinity. The combined application of the two stresses decreased the water potential and stomatal conductance without reducing the photosynthetic efficiency of the plants. Glycine betaine (GB) synthesis was inhibited, proline and glutamate content decreased, while γ-aminobutyric acid (GABA), amides and minor amino acids increased. The expression level and enzymatic activities of Δ1-pyrroline-5-carboxylate synthetase, asparagine synthetase and glutamate decarboxylase, as well as other enzymatic activities of nitrogen and carbon metabolism, were analyzed. Antioxidant enzymes and metabolites were also considered. The results showed that the complex interplay seen in durum wheat plants under salinity at LL was simplified: GB and antioxidants did not play a main role. On the contrary, the fine tuning of few specific primary metabolites (GABA, amides, minor amino acids and hexoses) remodeled metabolism and defense processes, playing a key role in the response to simultaneous stresses.
Collapse
Affiliation(s)
- Pasqualina Woodrow
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Loredana F Ciarmiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Maria Grazia Annunziata
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Severina Pacifico
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Federica Iannuzzi
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Antonio Mirto
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Luisa D'Amelia
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Emilia Dell'Aversana
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Simona Piccolella
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Amodio Fuggi
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
4
|
Annunziata MG, Ciarmiello LF, Woodrow P, Maximova E, Fuggi A, Carillo P. Durum Wheat Roots Adapt to Salinity Remodeling the Cellular Content of Nitrogen Metabolites and Sucrose. FRONTIERS IN PLANT SCIENCE 2017; 7:2035. [PMID: 28119716 PMCID: PMC5220018 DOI: 10.3389/fpls.2016.02035] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/20/2016] [Indexed: 05/20/2023]
Abstract
Plants are currently experiencing increasing salinity problems due to irrigation with brackish water. Moreover, in fields, roots can grow in soils which show spatial variation in water content and salt concentration, also because of the type of irrigation. Salinity impairs crop growth and productivity by inhibiting many physiological and metabolic processes, in particular nitrate uptake, translocation, and assimilation. Salinity determines an increase of sap osmolality from about 305 mOsmol kg-1 in control roots to about 530 mOsmol kg-1 in roots under salinity. Root cells adapt to salinity by sequestering sodium in the vacuole, as a cheap osmoticum, and showing a rearrangement of few nitrogen-containing metabolites and sucrose in the cytosol, both for osmotic adjustment and oxidative stress protection, thus providing plant viability even at low nitrate levels. Mainly glycine betaine and sucrose at low nitrate concentration, and glycine betaine, asparagine and proline at high nitrate levels can be assumed responsible for the osmotic adjustment of the cytosol, the assimilation of the excess of ammonium and the scavenging of ROS under salinity. High nitrate plants with half of the root system under salinity accumulate proline and glutamine in both control and salt stressed split roots, revealing that osmotic adjustment is not a regional effect in plants. The expression level and enzymatic activities of asparagine synthetase and Δ1-pyrroline-5-carboxylate synthetase, as well as other enzymatic activities of nitrogen and carbon metabolism, are analyzed.
Collapse
Affiliation(s)
- Maria Grazia Annunziata
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Loredana F. Ciarmiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”Caserta, Italy
| | - Pasqualina Woodrow
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”Caserta, Italy
| | - Eugenia Maximova
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Amodio Fuggi
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”Caserta, Italy
| | - Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”Caserta, Italy
| |
Collapse
|
5
|
Cloning, promoter analysis and expression of the tumor necrosis factor receptor-associated factor 6 (TRAF6) in Japanese scallop (Mizuhopecten yessoensis). Mol Biol Rep 2013; 40:4769-79. [DOI: 10.1007/s11033-013-2573-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 04/29/2013] [Indexed: 01/08/2023]
|