1
|
Zhou W, Ji L, Liu X, Tu D, Shi N, Yangqu W, Chen S, Gao P, Zhu H, Ruan C. AIFM1, negatively regulated by miR-145-5p, aggravates hypoxia-induced cardiomyocyte injury. Biomed J 2022; 45:870-882. [PMID: 34863964 PMCID: PMC9795367 DOI: 10.1016/j.bj.2021.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Hypoxia-induced apoptosis is linked to the pathogenesis of myocardial infarction. The role of apoptosis-inducing factor mitochondria associated 1 (AIFM1) in cardiomyocyte injury remains unclear. This study was aimed at probing into the role and the underlying regulatory mechanism of AIFM1 in myocardial injury. METHODS H9c2 cardiomyocytes and C57BL/6 mice were used for myocardial hypoxic/ischemic injury and myocardial infarction animal models. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to evaluate the expression levels of AIFM1 mRNA and miR-145-5p. Western blot was used for examining the expression levels of AIFM1, caspase-3, cleaved caspase-3, p-53, and γ-H2AX. Cell viability was examined by cell counting kit-8 (CCK-8) assay and BrdU assay. Interaction between AIFM1 and miR-145-5p was determined by bioinformatics analysis, qRT-PCR, Western blot, and dual-luciferase reporter assay. RESULTS AIFM1 expression was markedly highly elevated, while miR-145-5p expression was significantly down-regulated in the myocardial infarction animal model and H9c2 cells under hypoxia. Augmentation of AIFM1 led to a dramatic decrease of cell viability, accompanied by an increase of the secretion of the inflammatory cytokines IL-1β, TNF-α, IL-6, and the expression of cleaved caspase-3. Furthermore, AIFM1 was identified as a target of miR-145-5p. In addition, miR-145-5p/AIFM1 axis regulated the expression of p53. CONCLUSION AIFM1 may exacerbate myocardial ischemic injury by promoting inflammation and the injury of cardiomyocytes, and its up-regulation may be partly due to the down-regulation of miR-145-5p.
Collapse
Affiliation(s)
- Wugang Zhou
- Department of Emergency, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Department of Intensive Care Unit, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| | - Lv Ji
- Department of Intensive Care Unit, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| | - Xuqin Liu
- Department of Intensive Care Unit, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| | - Dan Tu
- Department of Intensive Care Unit, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| | - Ningning Shi
- Department of Intensive Care Unit, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| | - Wangmu Yangqu
- Department of Intensive Care Unit, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China,Brain Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Pingjin Gao
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Zhu
- Clinical Medical School, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Corresponding author. Clinical Medical School, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Room 401, Building 1, Jinzun Rd. 115, Pudong Dist., Shanghai 200125, China.
| | - Chengchao Ruan
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China,Corresponding author. Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Rd. 197, Shanghai 200024, China.
| |
Collapse
|
2
|
Neumann J, Bödicker K, Buchwalow IB, Schmidbaur C, Ramos G, Frantz S, Hofmann U, Gergs U. Effects of acute ischemia and hypoxia in young and adult calsequestrin (CSQ2) knock-out and wild-type mice. Mol Cell Biochem 2022; 477:1789-1801. [PMID: 35312907 PMCID: PMC9068673 DOI: 10.1007/s11010-022-04407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/03/2022] [Indexed: 11/26/2022]
Abstract
Calsequestrin (CSQ2) is the main Ca2+-binding protein in the sarcoplasmic reticulum of the mammalian heart. In order to understand the function of calsequestrin better, we compared two age groups (young: 4-5 months of age versus adult: 18 months of age) of CSQ2 knock-out mice (CSQ2(-/-)) and littermate wild-type mice (CSQ2(+/+)). Using echocardiography, in adult mice, the basal left ventricular ejection fraction and the spontaneous beating rate were lower in CSQ2(-/-) compared to CSQ2(+/+). The increase in ejection fraction by β-adrenergic stimulation (intraperitoneal injection of isoproterenol) was lower in adult CSQ2(-/-) versus adult CSQ2(+/+). After hypoxia in vitro (isolated atrial preparations) by gassing the organ bath buffer with 95% N2, force of contraction in electrically driven left atria increased to lower values in young CSQ2(-/-) than in young CSQ2(+/+). In addition, after global ischemia and reperfusion (buffer-perfused hearts according to Langendorff; 20-min ischemia and 15-min reperfusion), the rate of tension development was higher in young CSQ2(-/-) compared to young CSQ2(+/+). Finally, we evaluated signs of inflammation (immune cells, autoantibodies, and fibrosis). However, whereas no immunological alterations were found between all investigated groups, pronounced fibrosis was found in the ventricles of adult CSQ2(-/-) compared to all other groups. We suggest that in young mice, CSQ2 is important for cardiac performance especially in isolated cardiac preparations under conditions of impaired oxygen supply, but with differences between atrium and ventricle. Lack of CSQ2 leads age dependently to fibrosis and depressed cardiac performance in echocardiographic studies.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
- Institut für Pharmakologie und Toxikologie, Martin-Luther-Universität Halle-Wittenberg, Medizinische Fakultät, Magdeburger Str. 4, 06112 Halle, Germany
| | - Konrad Bödicker
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | | | - Constanze Schmidbaur
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | - Gustavo Ramos
- Department of Internal Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
3
|
Kurumazuka D, Kitada K, Tanaka R, Mori T, Ohkita M, Takaoka M, Matsumura Y. α-Lipoic acid exerts a primary prevention for the cardiac dysfunction in aortocaval fistula-created rat hearts. Heliyon 2019; 5:e02371. [PMID: 31517099 PMCID: PMC6728770 DOI: 10.1016/j.heliyon.2019.e02371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/04/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Aim α-Lipoic acid exerts a powerful antioxidant effect by acting as a free radical scavenger and inducing endogenous antioxidants such as vitamin E and glutathione. In the present study, we examined the effects of α-lipoic acid on cardiac dysfunction in rat hearts with aortocaval fistulae. Main methods Aortocaval fistulae were created between the abdominal aorta and inferior vena cava in male rats. Hemodynamic parameters were measured 14 days after surgery using an intravascular pressure transducer, and then these hearts were harvested for tissue weight measurement, pathological evaluation, and mRNA isolation. Results In vehicle-treated rats, left ventricular end-diastolic pressure and left ventricular weight significantly increased at 14 days after fistula creation. Fistula-creation resulted in expression of 4-hydroxy-2-nonenal, NADPH oxidase subunit p67phox and BNP mRNA in a time-dependent manner in the left ventricle. Long-term treatment (initiated 2 days before surgery, and continued for 14 days after fistula creation; days -2 to 14) with α-lipoic acid (30 mg/kg/day) markedly suppressed the increases in left and right ventricular weight, and left ventricular end-diastolic pressure. α-Lipoic acid treatment from days -2 to 14 prominently prevented the expression of 4-hydroxy-2-nonenal and NADPH oxidase subunit p67phox, and significantly raised BNP mRNA levels. Short-term treatment with α-lipoic acid from day - 2 to 7 was effective in preventing cardiac enlargement and dysfunction, similar to long-term treatment, but treatment from days 7–14 was not effective. Conclusions Treatment with α-lipoic acid can prevent cardiac hyperplasia and dysfunction, probably by inhibiting superoxide production and enhancing BNP mRNA expression in an early phase after fistula creation.
Collapse
Affiliation(s)
- Daisuke Kurumazuka
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Kento Kitada
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Ryosuke Tanaka
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Tatsuhiko Mori
- Division of Nephrology, Department of Internal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Mamoru Ohkita
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Masanori Takaoka
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yasuo Matsumura
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
4
|
Ding L, Su XX, Zhang WH, Xu YX, Pan XF. Gene Expressions Underlying Mishandled Calcium Clearance and Elevated Generation of Reactive Oxygen Species in the Coronary Artery Smooth Muscle Cells of Chronic Heart Failure Rats. Chin Med J (Engl) 2017; 130:460-469. [PMID: 28218221 PMCID: PMC5324384 DOI: 10.4103/0366-6999.199825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The calcium clearance and reactive oxygen species (ROS) generations in the coronary artery smooth muscle cells in chronic heart failure (HF) have not been fully investigated. Therefore, we attempted to understand the gene expressions underlying the mishandling of calcium clearance and the accumulations of ROS. METHODS We initially established an animal model of chronic HF by making the left anterior descending coronary artery ligation (CAL) in rats, and then isolated the coronary artery vascular smooth muscle cells from the ischemic and the nonischemic parts of the coronary artery vessels in 12 weeks after CAL operation. The intracellular calcium concentration and ROS level were measured using flow cytometry, and the gene expressions of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a), encoding sarcoplasmic reticulum Ca2+-ATPase 2a, encoding sodium-calcium exchanger (NCX), and p47phox encoding a subunit of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were examined using real-time quantitative reverse transcription polymerase chain reaction and Western blotting, respectively. RESULTS We found that the calcium accumulation and ROS generation in the coronary artery smooth muscle cells isolated from either the ischemic or the nonischemic part of the CAL coronary artery vessel were significantly increased irrespective of blood supply (all P < 0.01). Moreover, these were accompanied by the increased expressions of NCX and p47phox, the decreased expression of SERCA2a, and the increased amount of phosphorylated forms of p47phox in NADPH oxidase (all P < 0.05). CONCLUSIONS Our results demonstrated that the disordered calcium clearance and the increased ROS generation occurred in the coronary artery smooth muscle cells in rats with chronic HF produced by ligation of the left anterior descending coronary artery (CAL), and which was found to be disassociated from blood supply, and the increased generation of ROS in the cells was found to make concomitancy to the increased activity of NADPH oxidase in cytoplasm.
Collapse
Affiliation(s)
- Liang Ding
- Department of Pharmacology, School of Medicine, Hebei University, Baoding, Hebei 071000, China
| | - Xian-Xiu Su
- Department of Basic Medicine, School of Basic Medicine, Hebei University, Baoding, Hebei 071000, China
| | - Wen-Hui Zhang
- Department of Pharmacology, School of Medicine, Hebei University, Baoding, Hebei 071000, China
| | - Yu-Xiang Xu
- Department of Pharmacology, School of Medicine, Hebei University, Baoding, Hebei 071000, China
| | - Xue-Feng Pan
- Department of Pharmacology, School of Medicine, Hebei University, Baoding, Hebei 071000, China
- Department of Basic Medicine, School of Basic Medicine, Hebei University, Baoding, Hebei 071000, China
- Department of Biological Science, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
MAPK and PI3K pathways regulate hypoxia-induced atrial natriuretic peptide secretion by controlling HIF-1 alpha expression in beating rabbit atria. Biochem Biophys Res Commun 2013; 438:507-12. [PMID: 23916614 DOI: 10.1016/j.bbrc.2013.07.106] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 07/23/2013] [Indexed: 11/21/2022]
Abstract
Mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways are pivotal and intensively studied signaling pathways in hypoxic conditions. However, the roles of MAPK and PI3K in the regulation of hypoxia-induced atrial natriuretic peptide (ANP) secretion are not well understood. The purpose of the present study was to investigate the mechanism by which the MAPK/ERK (extracellular signal-regulated kinase) and PI3K signaling pathways regulate the acute hypoxia-induced ANP secretion in isolated beating rabbit atria. An acute hypoxic perfused beating rabbit atrial model was used. The ANP levels in the atrial perfusates were measured by radioimmunoassay, and the hypoxia-inducible factor-1α (HIF-1α) mRNA and protein levels in the atrial tissue were determined by RT-PCR and Western blot. Acute hypoxia significantly increased ANP secretion and HIF-1α mRNA and protein levels. Hypoxia-induced ANP secretion was markedly attenuated by the HIF-1α inhibitors, rotenone (0.5μmol/L) and CAY10585 (10μmol/L), concomitantly with downregulation of the hypoxia-induced HIF-1α mRNA and protein levels. PD098059 (30μmol/L) and LY294002 (30μmol/L), inhibitors of MAPK and PI3K, markedly abolished the hypoxia-induced ANP secretion and atrial HIF-1α mRNA and protein levels. The hypoxia-suppressed atrial dynamics were significantly attenuated by PD098059 and LY294002. Acute hypoxia in isolated perfused beating rabbit atria, markedly increased ANP secretion through HIF-1α upregulation, which was regulated by the MAPK/ERK and PI3K pathways. ANP appears to be part of the protective program regulated by HIF-1α in the response to acute hypoxic conditions.
Collapse
|
6
|
Garbern JC, Mummery CL, Lee RT. Model systems for cardiovascular regenerative biology. Cold Spring Harb Perspect Med 2013; 3:a014019. [PMID: 23545574 DOI: 10.1101/cshperspect.a014019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There is an urgent clinical need to develop new therapeutic approaches to treat heart failure, but the biology of cardiovascular regeneration is complex. Model systems are required to advance our understanding of biological mechanisms of cardiac regeneration as well as to test therapeutic approaches to regenerate tissue and restore cardiac function following injury. An ideal model system should be inexpensive, easily manipulated, easily reproducible, physiologically representative of human disease, and ethically sound. In this review, we discuss computational, cell-based, tissue, and animal models that have been used to elucidate mechanisms of cardiovascular regenerative biology or to test proposed therapeutic methods to restore cardiac function following disease or injury.
Collapse
|