1
|
Zhao YK, Zhu XD, Liu R, Yang X, Liang YL, Wang Y. The Role of PPARγ Gene Polymorphisms, Gut Microbiota in Type 2 Diabetes: Current Progress and Future Prospects. Diabetes Metab Syndr Obes 2023; 16:3557-3566. [PMID: 37954888 PMCID: PMC10638901 DOI: 10.2147/dmso.s429825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Over the past decade, there has been a significant increase in studies investigating the relationship between the polymorphisms of the Peroxisome Proliferator-Activated Receptor gamma (PPARγ) gene and Type 2 Diabetes (T2D). PPARγ, a critical transcription factor, plays a central role in lipid metabolism, insulin resistance, and inflammatory response. Concurrently, the influence of gut microbiota on the development of T2D has gained increasing attention, especially their role in affecting host metabolism, such as lipid metabolism and the PPARγ signaling pathway. This review provides a comprehensive analysis of recent studies on PPARγ gene polymorphisms and their association with T2D, with a specific emphasis on the implications of gut microbiota and their interaction with PPARγ pathways. We also discuss the potential of manipulating gut microbiota and targeting PPARγ gene polymorphisms in T2D management. By deepening our understanding of these relationships, we aim to pave the way for novel preventative and therapeutic strategies for T2D.
Collapse
Affiliation(s)
- Yi-Kun Zhao
- Department of Basic Medical College, Gansu University of Chinese Medicine, Lanzhou City, People’s Republic of China
| | - Xiang-Dong Zhu
- Department of Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan city, People’s Republic of China
| | - Rong Liu
- Department of Basic Medical College, Gansu University of Chinese Medicine, Lanzhou City, People’s Republic of China
| | - Xia Yang
- Department of Basic Medical College, Gansu University of Chinese Medicine, Lanzhou City, People’s Republic of China
| | - Yong-Lin Liang
- Department of Basic Medical College, Gansu University of Chinese Medicine, Lanzhou City, People’s Republic of China
| | - Yan Wang
- Department of Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan city, People’s Republic of China
| |
Collapse
|
2
|
Molecular Dynamics Simulation and Essential Dynamics of Deleterious Proline 12 Alanine Single-Nucleotide Polymorphism in PPARγ2 Associated with Type 2 Diabetes, Cardiovascular Disease, and Nonalcoholic Fatty Liver Disease. PPAR Res 2022; 2022:3833668. [PMID: 35547362 PMCID: PMC9085344 DOI: 10.1155/2022/3833668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 11/25/2022] Open
Abstract
Background. Peroxisome proliferator-activated receptor-γ (PPARγ) gene is located at 3p25 position. PPARγ functions as the master regulator of glucose homeostasis and lipoprotein metabolism, and recent studies have reported that it is involved in various metabolic diseases such as diabetes mellitus, hyperlipidemia, coronary artery disease (CAD), and nonalcoholic fatty liver disease (NAFLD). PPARγ1 and PPARγ2 are necessary for the development of adipose tissue and insulin sensitivity regulation. But PPARγ2 is the isoform that was controlled in response to nutrient intake and obesity. Methodology. In this study, we used computational techniques to show the impact of Pro12Ala polymorphism on PPARγ2. The 3-D structure of PPARγ2 was modeled using I-TASSER server. The modeled structure was validated with the ZLab server, and the mutation was created with SPDB viewer. Stability prediction tools were used. Molecular dynamics simulation (MDS) was used to understand the structural and functional behavior of the wild type and mutant. Essential dynamics was also applied. Results and Conclusions. Stability prediction tools were showed that this mutation has a destabilizing effect on the PPARγ2 structure. The RMSD, RMSF, Rg, SASA, and DSSP were in line with H-bond results that showed less flexibility in the mutant structure. Essential dynamics was used to verify MDS results. Pro12Ala polymorphism leads to rigidity of the PPARγ2 protein and might disturb the conformational changes and interactions of PPARγ2 and results in type 2 diabetes mellitus (T2DM), CAD, and NAFLD. This study can help scientists to develop a drug therapy against these diseases.
Collapse
|
3
|
Song Y, Li S, He C. PPARγ Gene Polymorphisms, Metabolic Disorders, and Coronary Artery Disease. Front Cardiovasc Med 2022; 9:808929. [PMID: 35402540 PMCID: PMC8984027 DOI: 10.3389/fcvm.2022.808929] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/22/2022] [Indexed: 01/14/2023] Open
Abstract
Being activated by endogenous and exogenous ligands, nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) enhances insulin sensitivity, promotes adipocyte differentiation, stimulates adipogenesis, and has the properties of anti-atherosclerosis, anti-inflammation, and anti-oxidation. The Human PPARγ gene (PPARG) contains thousands of polymorphic loci, among them two polymorphisms (rs10865710 and rs7649970) in the promoter region and two polymorphisms (rs1801282 and rs3856806) in the exonic region were widely reported to be significantly associated with coronary artery disease (CAD). Mechanistically, PPARG polymorphisms lead to abnormal expression of PPARG gene and/or dysfunction of PPARγ protein, causing metabolic disorders such as hypercholesterolemia and hypertriglyceridemia, and thereby increasing susceptibility to CAD.
Collapse
Affiliation(s)
- Yongyan Song
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Shujin Li
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Chuan He
- Department of Cardiology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
- *Correspondence: Chuan He,
| |
Collapse
|
4
|
Fan J, Qin X, Li Z. Molecular docking and multivariate analysis studies of active compounds in the safflower injection. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1665540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jianxin Fan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| |
Collapse
|
5
|
Maciejewska-Skrendo A, Pawlik A, Sawczuk M, Rać M, Kusak A, Safranow K, Dziedziejko V. PPARA, PPARD and PPARG gene polymorphisms in patients with unstable angina. Gene 2019; 711:143947. [PMID: 31252163 DOI: 10.1016/j.gene.2019.143947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) include the nuclear receptor superfamily of ligand-activated transcription factors involved in several metabolic processes, including carbohydrate and lipid metabolism. MATERIAL AND METHODS In this study we examined PPARA: rs4253778, rs1800206, PPARD: rs2267668, rs2016520, rs1053049, PPARG rs1801282 and PPARGC1A rs8192678 polymorphisms in patients with unstable angina. This study included 246 patients with unstable angina confirmed by coronary angiography (defined by >70% stenosis in at least one major coronary artery) and 189 healthy controls. RESULTS We observed statistically significant difference in distribution of PPARG rs1801282 genotypes and alleles between patients and control group. Among patients there was the increased frequency of CG and GG genotypes and G alleles. The association between PPARG rs1801282 G allele and unstable angina was confirmed in multivariate regression analysis. There were no statistically significant differences in the distributions of other studied polymorphisms between patients with unstable angina and the control group. CONCLUSIONS The results of our study suggest the association between PPARG rs1801282 G allele and unstable angina in Polish population.
Collapse
Affiliation(s)
- Agnieszka Maciejewska-Skrendo
- Unit of Biology, Ecology and Sports Medicine, Chair of Natural Sciences, Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland.
| | - Marek Sawczuk
- Laboratory of Physical Medicine, Chair of Sport, Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Monika Rać
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Kusak
- Department of Cardiology, County Hospital, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
6
|
PPARG2 Pro12Ala and TNF α -308G>A Polymorphisms Are Not Associated with Heart Failure Development in Patients with Ischemic Heart Disease after Coronary Artery Bypass Grafting. PPAR Res 2019; 2019:1932036. [PMID: 31275366 PMCID: PMC6582793 DOI: 10.1155/2019/1932036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/31/2019] [Accepted: 04/11/2019] [Indexed: 11/17/2022] Open
Abstract
TNFα and PPARγ are important modulators of metabolism, inflammation, and atherosclerosis. Coronary artery disease is the leading cause of heart failure (HF). The aim of the study was to assess whether polymorphisms of the TNFα (-308G>A) and PPARG2 (Pro12Ala) genes are associated with the risk of developing HF by patients with ischemic heart disease. Methods. 122 patients without HF (aged 63 ± 8.8 years, 85% males) with confirmed coronary artery disease qualified for coronary bypass grafting were enrolled in the study. After the procedure, they were screened for cardiac parameters. Those with elevated NT-proBNP or diminished left ventricular ejection fraction during follow-up were assigned to the HF group (n=78), and the remaining ones to the non-HF group (n=44). The TNFα -308G>A and PPARG2 Pro12Ala polymorphisms were detected using the TaqMan method. Results. The distributions of TNFα -308G>A and PPARG2 Pro12Ala did not differ between the HF and non-HF groups (-308G>A: 16% vs. 11.4% of alleles; Pro12Ala: 23.9% vs. 20.5% of alleles, respectively). IL-6 concentration in the plasma of TNFα A-allele carriers at months 1 and 12 after CABG was higher in the HF group compared to the non-HF group (1 month after CABG: 5.3 ± 3.4 vs. 3.1 ± 2.9, p<0.05; 12 months after CABG: 4.2 ± 3,9 vs. 1.4 ± 1.2, p<0.01, respectively). Both polymorphisms were not related to changes in the plasma TNFα concentration or other parameters related to HF. Conclusions. Our study did not reveal any correlation between the PPARG2 Pro12Ala and TNFα -308G>A polymorphisms and development of HF in patients with ischemic heart disease after coronary bypass grafting.
Collapse
|
7
|
Jing Y, Jian L, Li L, Ning Z, Xuyan N, Xiaojuan H, Miao J, Aiping L, Yan L. Mechanism of herbal pairs with the properties of Qi-tonifying, blood activation, blood-stasis breaking in treating coronary heart disease. J TRADIT CHIN MED 2017; 37:269-78. [DOI: 10.1016/s0254-6272(17)30054-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Qian Y, Li P, Zhang J, Shi Y, Chen K, Yang J, Wu Y, Ye X. Association between peroxisome proliferator-activated receptor-alpha, delta, and gamma polymorphisms and risk of coronary heart disease: A case-control study and meta-analysis. Medicine (Baltimore) 2016; 95:e4299. [PMID: 27512842 PMCID: PMC4985297 DOI: 10.1097/md.0000000000004299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Risk of coronary heart disease (CHD) has been suggested to be associated with polymorphisms of peroxisome proliferator-activated receptors (PPARs), while the results were controversial. We aimed to systematically assess the association between PPAR polymorphisms and CHD risk. METHODS A case-control study with 446 subjects was conducted to evaluate the association between CHD risk and C161T polymorphism, which was of our special interest as this polymorphism showed different effects on risks of CHD and acute coronary syndrome (ACS). Meta-analyses were conducted to assess all PPAR polymorphisms. Either a fixed- or a random-effects model was adopted to estimate overall odds ratios (ORs). RESULTS In the case-control study, T allele carriers of C161T polymorphism were not significantly associated with CHD risk (Odds ratio (OR) = 0.74, 95% confidence interval (CI) 0.47-1.15, P = 0.19), while T allele carriers showed higher risk of ACS (OR = 1.63, 95% CI 1.00-2.65, P = 0.048). The meta-analysis indicated that compared with CC homozygous, T allele carriers had lower CHD risk (OR = 0.69, 95% CI 0.59-0.82, P < 0.001) but higher ACS risk (OR = 1.43, 95% CI 1.09-1.87, P = 0.010). Three other polymorphisms were also found to be significantly associated with CHD risk under dominant model: PPAR-alpha intron 7G/C polymorphism (CC+GC vs GG, OR 1.42, 95% CI 1.13-1.78, P = 0.003), L162V polymorphism (VV+LV vs LL, OR 0.74, 95% CI 0.56-0.97, P = 0.031), and PPAR-delta +294T/C polymorphism (CC+TC vs TT, OR 1.51, 95% CI 1.12-2.05, P = 0.007). CONCLUSIONS The results suggested that PPAR-alpha intron 7G/C and L162V, PPAR-delta +294T/C and PPAR-gamma C161T polymorphisms could affect CHD susceptibility, and C161T polymorphism might have different effects on CHD and ACS.
Collapse
Affiliation(s)
- Yufeng Qian
- Department of Cardiology, Hangzhou First People's Hospital
| | - Peiwei Li
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health
| | - Jinjie Zhang
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine
| | - Kun Chen
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health
| | - Jun Yang
- Department of Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Yihua Wu
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health
| | - Xianhua Ye
- Department of Cardiology, Hangzhou First People's Hospital
| |
Collapse
|
9
|
Oladi M, Nohtani M, Avan A, Mirhafez SR, Tajbakhsh A, Ghasemi F, Asadi A, Elahdadi Salmani M, Mohammadi A, Hoseinzadeh L, Ferns GA, Ghayour Mobarhan M. Impact of the C1431T Polymorphism of the Peroxisome Proliferator Activated Receptor-Gamma (PPAR-γ) Gene on Fasted Serum Lipid Levels in Patients with Coronary Artery Disease. ANNALS OF NUTRITION AND METABOLISM 2015; 66:149-154. [PMID: 25896411 DOI: 10.1159/000381358] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/28/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The C1431T polymorphism of peroxisome proliferator activated receptor-γ (PPAR-γ) gene is related to diabetes and metabolic-syndrome. However, studies have been inconclusive about its association with coronary artery disease (CAD) and there have been no studies analyzing the association of this polymorphism with fasted-serum-lipid levels in Iranian-individuals with CAD. We investigated the association of PPAR-γ C1431T-polymorphism with CAD and dyslipidaemia in 787 individuals. METHODS Anthropometric-parameters and biochemical-measurements were evaluated, followed by genotyping. The association of the genetic-polymorphisms with CAD and lipid-profile was determined by univariate/multivariate-analyses. RESULTS Patients with CT or CT+TT genotype were at an increased-risk of CAD relative to CC-carriers (adjusted odds ratio: 2.03; 95% confidence interval, 1.01-4.09; p = 0.046). However, in the larger population, CT genotype was present at a higher frequency in the group with a positive angiogram. Furthermore, CT+TT genotypes were associated with an altered fasted-lipid-profile in the initial population sample of patients with a positive angiogram, compared to the group with a negative-angiogram. The angiogram-positive patients carrying the T allele had a significantly higher triglyceride, serum C-reactive protein and fasting-blood-glucose. CONCLUSION We have found the PPAR-γ C1431T polymorphism was significantly associated with fasted serum lipid profile in individuals with angiographically defined CAD. Since accumulating data support the role of PPAR-γ polymorphisms in CAD, further studies are required to investigate the association of this polymorphism with coronary artery disease.
Collapse
|
10
|
Wang P, Wang Q, Yin Y, Yang Z, Li W, Liang D, Zhou P. Association between Peroxisome Proliferator-activated Receptor Gamma Gene Polymorphisms and Atherosclerotic Diseases: A Meta-analysis of Case-control Studies. J Atheroscler Thromb 2015; 22:912-25. [PMID: 25832497 DOI: 10.5551/jat.26138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The aim of this study was to perform a meta-analysis to investigate the association between PPARγ rs1801282/rs3856806 polymorphisms and atherosclerotic diseases. METHODS The meta-analysis was performed by searching the PubMed, Embase and Web of Science databases from the first available year to September 10, 2013. Additionally, reference lists from the identified articles, reviews and abstracts presented at the meetings of related scientific societies were also checked. All case-control studies investigating the association between PPARγ rs1801282/rs3856806 polymorphisms and the risk of atherosclerotic disease were included. The association was assessed according to the odds ratio (OR) with a 95% confidence interval (CI). Publication bias was analyzed using Begg's funnel plot and Egger's regression test. RESULTS A total of 29 studies reporting PPARγ rs1801282/rs3856806 polymorphism were included in the final meta-analysis. Neither the rs1801282 (Pro12Ala) nor rs3856806 (C161T) polymorphisms showed any significant associations with susceptibility to atherosclerotic diseases. In the meta-analysis performed to assess the association between the rs3856806 gene polymorphism and atherosclerotic disease based on ethnicity and the type of disease, significant associations were found in the Caucasian subgroup, Asian, CAD and MI subgroups. CONCLUSIONS The present data suggest that there is no statistical evidence of a significant association between the PPARγ gene rs1801282/rs3856806 polymorphism and the risk of atherosclerotic disease. In contrast, the rs3856806 polymorphism was associated with an increased risk in the Caucasian and MI subgroups, whereas decreased risks were noted in the Asian and CAD subgroups. Due to significant between-study heterogeneity, further studies with a larger sample size involving homogeneous AS patients and well-matched controls are required in the future.
Collapse
Affiliation(s)
- Peijian Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College
| | | | | | | | | | | | | |
Collapse
|
11
|
Association of peroxisome proliferator-activated receptorγ gene Pro12Ala and C161T polymorphisms with cardiovascular risk factors in maintenance hemodialysis patients. Mol Biol Rep 2014; 41:7555-65. [PMID: 25096510 DOI: 10.1007/s11033-014-3645-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Abstract
The Pro12Ala and C161T polymorphisms in peroxisome proliferator-activated receptor γ (PPARγ) have been shown to be associated with carotid artery atherosclerosis. It remains unclear whether these two polymorphisms are associated with risk factors for cardiovascular disease (CVD) in hemodialysis (HD) patients. Therefore, the PPARγ genotypes in 99 HD patients and 149 controls were determined, and clinical characteristics among the different genotypes were compared. We found that the frequency of the Pro12Ala and C161T polymorphisms in HD patients was similar to that in healthy controls, but C161T polymorphism and T allele frequencies in HD patients with CVD were lower than that in HD patients without CVD. Carotid artery plaque (CAP) and carotid intima-media thickness (CIMT) in HD patients with CT + TT or Pro12Ala genotypes were also less than that in patients with CCor Pro12Pro genotypes, respectively. HD patients with CT + TT genotype had lower serum C reactive protein (CRP) levels, as well as higher triceps skin fold (TSF) thickness, mid arm circumference (MAC) and mean mid arm circumference (MMAC) than HD patients with CC genotype (P < 0.05). Moreover, CIMT of the Pro12Ala-CT161 subgroup was less than the Pro12Pro-CC161 and Pro12Pro-CT161 subgroup, and, CAP amounts of the Pro12Ala-CT161 subgroup was less than the Pro12Pro-CC161 subgroup. Our results indicate that the Pro12Ala and C161T polymorphisms were associated with some important risk factors for CVD in HD patients in the Han Chinese population.
Collapse
|
12
|
Effect of the PPARγ C161T gene variant on serum lipids in ischemic stroke patients with and without type 2 diabetes mellitus. J Mol Neurosci 2014; 54:730-8. [PMID: 24841086 DOI: 10.1007/s12031-014-0326-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/06/2014] [Indexed: 12/17/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor involved in the regulation of lipid metabolism, diabetes, obesity, atherogenesis and inflammation. PPARγ genetic variation has been associated with metabolic and cardiovascular diseases. The aim of this study was to explore, for the first time, the relationship between PPARγ C161T polymorphism and the risk of ischemic stroke (IS) among patients with type 2 diabetes mellitus (T2DM). A total of 196 patients with IS (117 diabetics and 79 nondiabetics) and 192 controls were recruited to enroll in this study. PPARγ C161T genotyping was performed by PCR-RFLP technique. The 161T allele as compared with C allele was found to be higher in controls than in IS patients (with or without T2DM). After adjusting for multiple risk factors, the T allele carriers had significantly reduced IS risk (OR=0.575, 95% CI 0.348-0.951, p=0.030) compared to the CC homozygotes which increased significantly the risk in IS patients with T2DM (OR=1.85, 95% CI 1.23-2.62). Moreover, the triglycerides (TG) and ApoB levels in CC homozygote carriers were significantly higher than those in T allele carriers. These results indicate that the C161T of PPARγ may reduce the risk of IS by modulation of adipose metabolism especially TG and ApoB in IS patients with T2DM.
Collapse
|
13
|
Vergotine Z, Kengne AP, Erasmus RT, Yako YY, Matsha TE. Rare mutations of peroxisome proliferator-activated receptor gamma: frequencies and relationship with insulin resistance and diabetes risk in the mixed ancestry population from South Africa. Int J Endocrinol 2014; 2014:187985. [PMID: 25197274 PMCID: PMC4150434 DOI: 10.1155/2014/187985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/16/2014] [Indexed: 11/17/2022] Open
Abstract
Background. Genetic variants in the nuclear transcription receptor, PPARG, are associated with cardiometabolic traits, but reports remain conflicting. We determined the frequency and the clinical relevance of PPARG SNPs in an African mixed ancestry population. Methods. In a cross-sectional study, 820 participants were genotyped for rs1800571, rs72551362, rs72551363, rs72551364, and rs3856806, using allele-specific TaqMan technology. The homeostatic model assessment of insulin (HOMA-IR), β-cells function (HOMA-B%), fasting insulin resistance index (FIRI), and the quantitative insulin-sensitivity check index (QUICKI) were calculated. Results. No sequence variants were found except for the rs3856806. The frequency of the PPARG-His447His variant was 23.8% in the overall population group, with no difference by diabetes status (P = 0.215). The His447His allele T was associated with none of the markers of insulin resistance overall and by diabetes status. In models adjusted for 2-hour insulin, the T allele was associated with lower prevalent diabetes risk (odds ratio 0.56 (95% CI 0.31-0.95)). Conclusion. Our study confirms the almost zero occurrences of known rare PPARG SNPs and has shown for the first time in an African population that one of the common SNPs, His447His, may be protective against type 2 diabetes.
Collapse
Affiliation(s)
- Z. Vergotine
- Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7530, South Africa
- Division of Chemical Pathology, Stellenbosch University, Cape Town 7505, South Africa
| | - A. P. Kengne
- Non-Communicable Diseases Research Unit, South African Medical Research Council and University of Cape Town, Cape Town 7505, South Africa
| | - R. T. Erasmus
- Division of Chemical Pathology, Stellenbosch University, Cape Town 7505, South Africa
| | - Y. Y. Yako
- Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7530, South Africa
| | - T. E. Matsha
- Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7530, South Africa
- *T. E. Matsha:
| |
Collapse
|