1
|
Algarni A. Genetic Insights Into Leukemia Susceptibility in the Arab Population: A Scoping Review. Cureus 2024; 16:e67421. [PMID: 39310620 PMCID: PMC11415027 DOI: 10.7759/cureus.67421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
As per the Global Cancer Observatory, the WHO Eastern Mediterranean region (which includes the Arabic countries) ranks highest for age-standardized mortality rate at 4 per 100,000, thus indicating a probable role of genetic associations. Identifying the genes associated with leukemia in the Arab population is crucial for effective preventive and treatment strategies. This scoping review aimed to determine the nature and extent of research available on the genes associated with the major types of leukemia among the Arab population. As per the scoping review guidelines, a comprehensive search was conducted in PUBMED and Google Scholar for articles published before 01/10/2023 and focused on leukemia-related genes among the Arab population. In total 119 studies, focusing on genes associated with leukemia met the inclusion criteria. On reviewing these studies, 27 genes were found to be associated with ALL, 33 genes with AML, seven genes with CLL, and 14 genes with CML. The majority of these genes were associated with an increased risk for the disease. Notably, the 119 studies covered only nine out of the 22 Arab countries, with 56 studies carried out in Egypt, exhibiting an imbalance in the regional distribution of the research landscape. Thus, indicating the inadequacy of research on leukemia genetics in the Arab region in comparison to the Western studies. This finding highlights the need for extensive research in the Middle Eastern region to gain geographically heterogeneous genetic information about the Arab population. In conclusion, this scoping study highlights the genes associated with the major types of leukemia among the Arab population and also indicates the need for comprehensive and regionally balanced research on leukemia genetics in Middle Eastern countries. Addressing this gap is essential to provide robust genetic data that can be used for targeted interventions to improve leukemia outcomes in the Middle East. Increased research efforts in all Middle Eastern countries will contribute to a greater understanding of genetic predisposition and help develop effective prevention strategies and treatments tailored to this population.
Collapse
Affiliation(s)
- Abdulrahman Algarni
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, SAU
| |
Collapse
|
2
|
Frikha I, Frikha R, Medhaffer M, Charfi H, Turki F, Elloumi M. Impact of CYP1A1 variants on the risk of acute lymphoblastic leukemia: evidence from an updated meta-analysis. Blood Res 2024; 59:9. [PMID: 38485870 PMCID: PMC10917727 DOI: 10.1007/s44313-024-00007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/24/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVE Our study aimed to investigate the association between cytochrome P450 1A1 (CYP1A1) polymorphisms (T3801C and A2455G) and acute lymphoblastic leukemia (ALL) risk, considering genetic models and ethnicity. MATERIALS AND METHODS PubMed, Embase, Web of Knowledge, Scopus, and the Cochrane electronic databases were searched using combinations of keywords related to CYP1A1 polymorphisms and the risk of ALL. Studies retrieved from the database searches underwent screening based on strict inclusion and exclusion criteria. RESULTS In total, 2822 cases and 4252 controls, as well as 1636 cases and 2674 controls of the C3801T and A2455G variants of CYP1A1, respectively, were included in this meta-analysis. The T3801C polymorphism of CYP1A1 significantly increases the risk of ALL, particularly those observed in Asian and Hispanic populations, independent of age. Similarly, the A2455G polymorphism of CYP1A1 plays a significant role in the susceptibility to ALL in all genetic models, except the heterozygous form. This association was observed mainly in mixed populations and in both children and adults (except in the heterozygous model). CONCLUSION Our comprehensive analysis indicates that the T3801 and A2455G polymorphisms of CYP1A1 may increase the risk of ALL depending on ethnicity. Therefore, both variants should be considered promising biomarkers for ALL risk. Further large-scale investigations are necessary to assess other factors, such as gene-gene or gene-environment interactions.
Collapse
Affiliation(s)
- Imen Frikha
- Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
- Department of Hematology, Hedi Chaker Hospital, Sfax, Tunisia
| | - Rim Frikha
- Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia.
- Department of Medical Genetics, Hedi Chaker Hospital, Sfax, Tunisia.
| | - Moez Medhaffer
- Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
- Department of Hematology, Hedi Chaker Hospital, Sfax, Tunisia
| | - Hanen Charfi
- Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
- Department of Hematology, Hedi Chaker Hospital, Sfax, Tunisia
| | - Fatma Turki
- Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
- Department of Medical Genetics, Hedi Chaker Hospital, Sfax, Tunisia
| | - Moez Elloumi
- Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
- Department of Hematology, Hedi Chaker Hospital, Sfax, Tunisia
| |
Collapse
|
3
|
Lin C, Xu JQ, Zhong GC, Chen H, Xue HM, Yang M, Chen C. Integrating RNA-seq and scRNA-seq to explore the biological significance of NAD + metabolism-related genes in the initial diagnosis and relapse of childhood B-cell acute lymphoblastic leukemia. Front Immunol 2022; 13:1043111. [PMID: 36439178 PMCID: PMC9691973 DOI: 10.3389/fimmu.2022.1043111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Nicotinamide Adenine Dinucleotide (NAD) depletion is reported to be a potential treatment for B-cell Acute Lymphoblastic Leukemia (B-ALL), but the mechanism of NAD metabolism-related genes (NMRGs) in B-ALL relapse remains unclear. METHODS Transcriptome data (GSE3912), and single-cell sequencing data (GSE130116) of B-ALL patients were downloaded from Gene Expression Omnibus (GEO) database. NMRGs were sourced from Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome databases. Further, the differentially expressed NMRGs (DE-NMRGs) were selected from the analysis between initial diagnosis and relapse B-ALL samples, which further performed functional enrichment analyses. The biomarkers were obtained through random forest (RF) algorithm and repeated cross validation. Additionally, cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm was used to evaluate the immune cell differences between the initial diagnosis and relapse samples, and the correlations between biomarkers and gene markers of differential immune cells were analyzed. Furthermore, single cell RNA sequencing was conducted in the GSE130116 dataset to find key cell clusters. In addition, according to biomarkers expressions, cell clusters were categorized into high and low biomarker expression groups, and Gene Set Enrichment Analysis (GSEA) analysis was performed on them. Finally, the cell clusters with the highest expression of biomarkers were selected to explore the roles of biomarkers in different cell clusters and identify transcription factors (TFs) influencing biological markers. RESULTS 23 DE-NMRGs were screened out, which were mainly enriched in nucleoside phosphate metabolic process, nucleotide metabolic process, and Nicotinate and nicotinamide metabolism. Moreover, 3 biomarkers (NADSYN1, SIRT3, and PARP6) were identified from the machine learning. CIBERSORT results demonstrated that four types of immune cells (B Cells naive, Monocyte, Neutrophils, and T cells CD4 memory Activated) were significantly different between the initial diagnosis and the relapse B-ALL samples, and there were strong correlations between biomarkers and differential immune cells such as positive correlation between NADSYN1 and B Cells naive. The single cell analyses showed that the biomarkers were highly expressed in common myeloid progenitors (CMP), granulocyte-macrophage progenitor (GMP), and megakaryocyte-erythroid progenitor (MEP) cell clusters. Gene set enrichment analysis (GSEA) results indicated that 55 GO terms and 3 KEGG pathways were enriched by the genes in high and low biomarker expression groups. It was found that TF CREB3L2(+) was significantly reduced in the high expression group, which may be the TF affecting biomarkers in the high expression group. CONCLUSION This study identified NADSYN1, SIRT3, and PARP6 as the biomarkers of B-ALL, explored biological significance of NMRGs in the initial diagnosis and relapse of B-ALL, and revealed mechanism of biomarkers at the level of the single cell.
Collapse
Affiliation(s)
- Chao Lin
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jia-Qi Xu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Gui-Chao Zhong
- Department of Pediatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Hui Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Hong-Man Xue
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Mo Yang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chun Chen
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
4
|
Cheng H, Huang C, Tang G, Qiu H, Gao L, Zhang W, Wang J, Yang J, Chen L. Emerging role of EPHX1 in chemoresistance of acute myeloid leukemia by regurlating drug‐metabolizing enzymes and apoptotic signaling. Mol Carcinog 2019; 58:808-819. [DOI: 10.1002/mc.22973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Hui Cheng
- Institute of HematologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Chongmei Huang
- Institute of HematologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Gusheng Tang
- Institute of HematologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Huiying Qiu
- Institute of HematologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Lei Gao
- Institute of HematologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Weiping Zhang
- Institute of HematologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Jianmin Wang
- Institute of HematologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Jianmin Yang
- Institute of HematologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Li Chen
- Institute of HematologyChanghai HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
5
|
López-Vargas R, Méndez-Serrano A, Albores-Medina A, Oropeza-Hernández F, Hernández-Cadena L, Mercado-Calderón F, Alvarado-Toledo E, Herrera-Morales S, Arellano-Aguilar O, García-Vargas G, Montero-Montoya R. Oxidative stress index is increased in children exposed to industrial discharges and is inversely correlated with metabolite excretion of voc. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:639-652. [PMID: 29968258 DOI: 10.1002/em.22207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED Although the Atoyac River has been classified as highly polluted by environmental authorities, several communities are settled on its banks, affecting around 1.5 million persons, as well as farmland, due to an environmental distribution of toxics in the area. Our aim was to demonstrate that this environment affects important physiological processes that have an impact in health, so we conducted a study of schoolchildren from small communities on the banks of the river and in another similar town located far from it. 91 and 93 students, boys and girls, were studied from each site for oxidative stress index (OSI), calculated from the total antioxidant capacity and the total oxidative status, BTEX metabolite excretion and relevant metabolic polymorphisms participating in the bioactivation-detoxification of most VOC: CYP2E1 RsaI, NQO1 C609T, and null polymorphisms of GSTT1 and GSTM1. Results showed that OSI was significantly higher in children living by the river (5.23 ± 3.4 vs 2.59 ± 1.46, 95% C.I.). At this site, OSI was correlated with diminished metabolite excretion and a diminished antioxidant capacity; an association with genotypes CYP2E1RsaI (c2c2), GSTT1 present and NQO1*2 (CC) was also observed. Furthermore, boys at this site exhibited a diminished BMI compared to boys from the other community who were younger. IN CONCLUSION children living at polluted sites like this, show early biological effects that might lead to health problems in their adult life. Environmental protection should be enforced to protect people's health in these sites where not even environmental monitoring is done. Environ. Mol. Mutagen. 59:639-652, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rocío López-Vargas
- Departamento de Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, Mexico
| | | | - Arnulfo Albores-Medina
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados CDMX, Mexico
| | | | | | - Franciso Mercado-Calderón
- Coordinación de Salud en el Trabajo, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | | | - Selene Herrera-Morales
- Departamento de Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, Mexico
| | | | | | - Regina Montero-Montoya
- Departamento de Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, Mexico
| |
Collapse
|
6
|
He H, Zhai X, Liu X, Zheng J, Zhai Y, Gao F, Chen Y, Lu J. Associations of NQO1 C609T and NQO1 C465T polymorphisms with acute leukemia risk: a PRISMA-compliant meta-analysis. Onco Targets Ther 2017; 10:1793-1801. [PMID: 28367062 PMCID: PMC5370065 DOI: 10.2147/ott.s132503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The NAD(P)H:quinone oxidoreductase (NQO1) C609T and C465T polymorphisms have been widely thought to be associated with the risk of acute leukemia (AL) in recent years, but the correlations are still unclear. A meta-analysis is generally acknowledged as one of the best methods for secondary research, and so it was applied in this study with the aim of elucidating how the NQO1 C609T and C465T polymorphisms are related to the risk of AL. METHODS Relevant studies were searched in the PubMed, EMBASE, CNKI, and Wanfang databases, and the obtained data were analyzed using Stata (version 12.1). The allele-contrast model was applied, and odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate relationship strengths. Meta-regression was used to identify sources of heterogeneity, and subgroup analyses were conducted. Publication bias was analyzed using funnel plots, with the trim-and-fill method used to analyze the effect of publication bias on pooled results. In addition, sensitivity analysis, the fail-safe number method, and cumulative analysis by publication year were performed to measure the stability of the obtained results. RESULTS This meta-analysis included 28 relevant studies involving 5,953 patients and 8,667 controls. Overall, the C609T polymorphism was associated with the risk of acute lymphoblastic leukemia (ALL; OR =1.18, 95% CI =1.00-1.39, P=0.05). Meanwhile, race was found to be a potential source of heterogeneity for the relationship between the C609T polymorphism and acute myeloid leukemia (AML) risk, and the subgroup analysis identified the C609T polymorphism as a risk factor for AML in Asians (OR =1.34, 95% CI =1.03-1.74, P=0.03). The number of studies about C465T polymorphism was too small to pool the data. CONCLUSION There are increased risks of ALL in all subjects and of AML in Asians for carriers of the NQO1 C609T polymorphism. Further studies are needed to verify the associations of the C465T polymorphism with the risk of AL.
Collapse
Affiliation(s)
| | - Xiaoyu Zhai
- Clinical Research Center
- College of Pharmacy, Xi’an Medical University
| | | | | | - Yajing Zhai
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University
| | | | - Yonghua Chen
- School of Public Health, Xi’an Jiaotong University, Xi’an, China
| | | |
Collapse
|
7
|
Abstract
In first part of this study, a systematic review was designed to explore the involvement of CYP1A1 and GSTP1 genes in breast cancerogenesis. Based on systematic review, we designed a study to screen CYP1A1 and GSTP1 genes for mutation and their possible association with breast carcinogenesis. A total of 400 individuals were collected and analyzed by PCR-SSCP. After sequence analysis of coding region of CYP1A1 we identified eleven mutations in different exons of respective gene. Among these eleven mutations, ~3 folds increased breast cancer risk was found associated with Asp82Glu mutation (OR 2.99; 95% CI 1.26-7.09), with Ser83Thr mutation (OR 2.99; 95% CI 1.26-7.09) and with Glu86Ala mutation (OR 3.18; 95% CI 1.27-7.93) in cancer patients compared to controls. Furthermore, ~4 folds increase in breast cancer risk was found associated with Asp347Glu, Phe398Tyr and 5178delT mutations (OR 3.92; 95% CI 1.35-11.3) in patients compared to controls. The sequence analysis of GSTP1 resulted in identification of total five mutations. Among these five mutations, ~3 folds increase in breast cancer risk was observed associated with 1860G>A mutation, with 1861-1876delCAGCCCTCTGGAGTGG mutation (OR 2.70; 95% CI 1.10-6.62) and with 1861C>A mutation (OR 2.97; 95% CI 1.01-8.45) in cancer patients compared to controls. Furthermore, ~5 folds increase in breast cancer risk was associated with 1883G>T mutation (OR 4.75; 95% CI 1.46-15.3) and ~6 folds increase in breast cancer risk was found associated with Iso105Val mutation (OR 6.43; 95% CI 1.41-29.3) in cancer patients compared to controls. Our finding, based on systematic review and experimental data suggest that the polymorphic CYP1A1 and GSTP1 genes may contribute to risk of developing breast cancer.
Collapse
|
8
|
Kreile M, Piekuse L, Rots D, Dobele Z, Kovalova Z, Lace B. Analysis of possible genetic risk factors contributing to development of childhood acute lymphoblastic leukaemia in the Latvian population. Arch Med Sci 2016; 12:479-85. [PMID: 27279837 PMCID: PMC4889682 DOI: 10.5114/aoms.2016.59920] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/10/2014] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Childhood acute lymphoblastic leukaemia (ALL) is a complex disease caused by a combination of genetic susceptibility and environmental exposure. Previous genome-wide association studies have reported several single nucleotide polymorphisms (SNPs) associated with the incidence of ALL. Several variations in genes encoding enzymes involved in carcinogenesis are suggested as being associated with an increased risk of ALL development. MATERIAL AND METHODS We enrolled 77 paediatric ALL patients and 122 healthy controls, and in addition parental DNA was also available for 45 probands. SNPs rs10821936 (ARID5B), rs4132601 (IKZF1), rs2239633 (CEBPE), rs3731217 (CDKN2A) and rs1800566 (NQO1) and the presence of GSTT1 and GSTM1 null variants were detected. For statistical analysis the hybrid method of two designs 'Haplin' was used as well as linkage disequilibrium for family-based association studies. RESULTS We identified the SNP rs10821936 in the ARID5B gene as being statistically significantly associated with childhood ALL, especially if the C allele is in a homozygous state, relative risk (RR) 4.65, 95% CI: 2.03-10.6, p = 0.0006. Statistically significant differences were not found in other SNPs. We found risk combinations including all five variations, the strongest association being found in a combination where all five genetic variants are in a homozygous state, CCTTTTTTCC, p = 0.032. CONCLUSIONS The identified SNP rs10821936 could serve as a potential risk marker for childhood ALL development. Further studies in an independent population are needed for verification.
Collapse
Affiliation(s)
- Madara Kreile
- Scientific Laboratory of Molecular Genetics, Riga Stradiņš University, Riga, Latvia
- Institute of Oncology, Riga Stradiņš University, Riga, Latvia
| | - Linda Piekuse
- Scientific Laboratory of Molecular Genetics, Riga Stradiņš University, Riga, Latvia
| | - Dmitrijs Rots
- Scientific Laboratory of Molecular Genetics, Riga Stradiņš University, Riga, Latvia
| | - Zane Dobele
- Scientific Laboratory of Molecular Genetics, Riga Stradiņš University, Riga, Latvia
| | - Zhanna Kovalova
- Department of Hematology and Oncology, Children's Clinical University Hospital, Riga, Latvia
| | - Baiba Lace
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
9
|
Lu J, Zhao Q, Zhai YJ, He HR, Yang LH, Gao F, Zhou RS, Zheng J, Ma XC. Genetic polymorphisms of CYP1A1 and risk of leukemia: a meta-analysis. Onco Targets Ther 2015; 8:2883-2902. [PMID: 26491362 PMCID: PMC4608596 DOI: 10.2147/ott.s92259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The associations between CYP1A1 polymorphisms and risk of leukemia have been studied extensively, but the results have been inconsistent. Therefore, in this study, we performed a meta-analysis to clarify associations of three CYP1A1 polymorphisms (T3801C, A2455G, and C4887A) with the risks of acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). Medline, EMBASE, and China National Knowledge Infrastructure databases were searched to collect relevant studies published up to April 20, 2015. The extracted data were analyzed statistically, and pooled odds ratios with 95% confidence intervals were calculated to quantify the associations. Overall, 26 publications were included. Finally, T3801C was associated with an increased risk of AML in Asians under the dominant model. For A2455G, the risk of ALL was increased among Caucasians in the recessive model and the allele-contrast model; A2455G was also associated with an increased risk of CML among Caucasians under the recessive model, dominant model, and allele-contrast model. For C4887A, few of the included studies produced data. In conclusion, the results suggest that Asians carrying the T3801C C allele might have an increased risk of AML and that Caucasians with the A2455G GG genotype might have an increased risk of ALL. Further investigations are needed to confirm these associations.
Collapse
Affiliation(s)
- Jun Lu
- Clinical Research Center, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Qian Zhao
- Clinical Research Center, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- College of Pharmacy, Xi’an Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Ya-Jing Zhai
- Department of Pharmacy, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Hai-Rong He
- Clinical Research Center, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Li-Hong Yang
- Clinical Research Center, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Fan Gao
- Clinical Research Center, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Rong-Sheng Zhou
- Department of Anesthesiology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jie Zheng
- Clinical Research Center, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xian-Cang Ma
- Clinical Research Center, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
10
|
Li C, Zhou Y. Association between NQO1 C609T polymorphism and acute lymphoblastic leukemia risk: evidence from an updated meta-analysis based on 17 case-control studies. J Cancer Res Clin Oncol 2014; 140:873-81. [PMID: 24488035 DOI: 10.1007/s00432-014-1595-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Quinone oxidoreductase (NQO1) C609T polymorphisms have been implicated in acute lymphoblastic leukemia (ALL) risk, but previously published studies were inconsistent and recent meta-analyses were not adequate. The aim of this study was to determine more precise estimations for the relationship between the NQO1 C609T polymorphism and the risk of ALL. METHODS Electronic searches for all publications were conducted on association between this variant and ALL in several databases updated in May 2013. The quality of studies was evaluated using the Newcastle-Ottawa Scale. Crude odds ratios (ORs) with 95 % confidence intervals (CIs) were used to assess the strength of the association. Seventeen studies were identified, including 2,264 ALL patients and 3,798 controls. RESULTS Overall, significantly elevated ALL risk was associated with NQO1 C609T variant genotypes when all of the studies were pooled into the meta-analysis (TT vs. CC: OR 1.46, 95 % CI 1.18-1.79; dominant model: OR 1.45, 95 % CI 1.19-1.77). In the subgroup analysis by ethnicity, significantly increased risks were found for non-Asians (T/T vs. C/C: OR 1.74, 95 % CI 1.29-2.36; dominant model: T/T + C/T vs. C/C: OR 1.7, 95 % CI 1.27-2.29). When stratified by adult or children studies, statistically significantly elevated risks were found among adult studies (codominant model: C/T vs. C/C: OR 1.38, 95 % CI 1.02-1.87; dominant model: T/T + C/T vs. C/C: OR 1.52, 95 % CI 1.18-1.97) and children studies (recessive model: T/T vs. C/T + C/C: OR 1.34, 95 % CI 1.05-1.7). CONCLUSIONS Our results indicate that the C609T polymorphism of the NQO1 gene is an important genetic risk factor in ALL.
Collapse
Affiliation(s)
- Cuiping Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | | |
Collapse
|
11
|
Yang Y, Zhang Y, Wu Q, Cui X, Lin Z, Liu S, Chen L. Clinical implications of high NQO1 expression in breast cancers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:14. [PMID: 24499631 PMCID: PMC3944477 DOI: 10.1186/1756-9966-33-14] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 01/27/2014] [Indexed: 01/01/2023]
Abstract
Background NAD (P) H: quinone oxidoreductase 1 (NQO1) is a xenobiotic metabolizing enzyme that detoxifies chemical stressors and antioxidants, providing cytoprotection in normal tissues. However, high-level expression of NQO1 has been correlated with numerous human malignancies, suggesting a role in carcinogenesis and tumor progression. This study aimed to explore the clinicopathological significance of NQO1 and as a prognostic determinant in breast cancer. Methods A total of 176 breast cancer patients with strict follow-up, 45 ductal carcinoma in situ (DCIS), 22 hyperplasia and 52 adjacent non-tumor breast tissues were selected for immunohistochemical staining of NQO1 protein. Immunofluorescence staining was also performed to detect the subcellular localization of NQO1 protein in MCF-7 breast cancer cells. Eight fresh breast cancers paired with adjacent non-tumor tissues were quantified using real time RT-PCR (qRT-PCR) and western blot. The correlations between NQO1 overexpression and the clinical features of breast cancer were evaluated using chi-square test and Fisher’s exact tests. The survival rate was calculated using the Kaplan–Meier method, and the relationship between prognostic factors and patient survival was also analyzed by the Cox proportional hazards models. Results NQO1 protein showed a mainly cytoplasmic staining pattern in breast cancer. The strongly positive rate of NQO1 protein was 61.9% (109/176) in breast cancer, and was significantly higher than in DCIS (31.1%, 14/45), hyperplasia tissues (13.6%, 3/22) and adjacent non-tumor tissues (13.5%, 7/52). High-level expression of NQO1 protein was correlated with late clinical stage, poor differentiation, lymph node metastasis, Her2 expression and disease-free and 10-year overall survival rates in breast cancer. Moreover, multivariate analysis suggested that NQO1 emerged as a significant independent prognostic factor along with clinical stage and Her2 expression status in patients with breast cancer. Conclusions High-level expression of NQO1 appears to be associated with breast cancer progression, and may be a potential biomarker for poor prognostic evaluation of breast cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuangping Liu
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji 133002, China.
| | | |
Collapse
|
12
|
Gao B, Doan A, Hybertson BM. The clinical potential of influencing Nrf2 signaling in degenerative and immunological disorders. Clin Pharmacol 2014; 6:19-34. [PMID: 24520207 PMCID: PMC3917919 DOI: 10.2147/cpaa.s35078] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2; encoded in humans by the NFE2L2 gene) is a transcription factor that regulates the gene expression of a wide variety of cytoprotective phase II detoxification and antioxidant enzymes through a promoter sequence known as the antioxidant-responsive element (ARE). The ARE is a promoter element found in many cytoprotective genes; therefore, Nrf2 plays a pivotal role in the ARE-driven cellular defense system against environmental stresses. Agents that target the ARE/Nrf2 pathway have been tested in a wide variety of disorders, with at least one new Nrf2-activating drug now approved by the US Food and Drug Administration. Examination of in vitro and in vivo experimental results, and taking into account recent human clinical trial results, has led to an opinion that Nrf2-activating strategies – which can include drugs, foods, dietary supplements, and exercise – are likely best targeted at disease prevention, disease recurrence prevention, or slowing of disease progression in early stage illnesses; they may also be useful as an interventional strategy. However, this rubric may be viewed even more conservatively in the pathophysiology of cancer. The activation of the Nrf2 pathway has been widely accepted as offering chemoprevention benefit, but it may be unhelpful or even harmful in the setting of established cancers. For example, Nrf2 activation might interfere with chemotherapies or radiotherapies or otherwise give tumor cells additional growth and survival advantages, unless they already possess mutations that fully activate their Nrf2 pathway constitutively. With all this in mind, the ARE/Nrf2 pathway remains of great interest as a possible target for the pharmacological control of degenerative and immunological diseases, both by activation and by inhibition, and its regulation remains a promising biological target for the development of new therapies.
Collapse
Affiliation(s)
- Bifeng Gao
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - An Doan
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brooks M Hybertson
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
13
|
The NQO1 polymorphism C609T (Pro187Ser) and cancer susceptibility: a comprehensive meta-analysis. Br J Cancer 2013; 109:1325-37. [PMID: 23860519 PMCID: PMC3778271 DOI: 10.1038/bjc.2013.357] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 12/26/2022] Open
Abstract
Background: Evidence is increasingly emerging about multiple roles for the NAD(P)H quinone oxidoreductase 1 enzyme in cancer. The C609T (rs1800566, Pro187Ser) null polymorphism of the NQO1 gene contributes significantly to the variation in enzymatic activity across different populations. NQO1 C609T polymorphism was thoroughly investigated with respect to cancer susceptibility. The results were inconsistent partly due to low sample sizes. The aim of the present work was to perform a meta-analysis to assess association for all common cancer sites separately and in combination. Methods: Our meta-analysis involved 92 studies including 21 178 cases and 25 157 controls. Statistical analysis involved individual cancer sites and the combined cancer risk. Association was tested under different genetic models. Results: We found a statistically significant association between the variant T allele and overall cancer risk in the worldwide population (for the TT vs CC model, OR=1.18 (1.07–1.31), P=0.002, I2=36%). Stratified analysis revealed that this association was largely attributed to the Caucasian ethnicity (for the TT vs CC model, OR=1.28 (1.12–1.46), P=0.0002, I2=1%). Stratification by tumour site showed significant association for bladder cancer in the worldwide population (for the TT vs CC model, OR=1.70 (1.17–2.46), P=0.005, I2=0%), and in the Asian population (for the TT vs CC model, 1.48 (1.14–1.93), P=0.003, I2=16%). Positive association was also found for gastric cancer in the worldwide population under the dominant model (OR=1.34 (1.09–1.65), P=0.006, I2=15%). Conclusion: Our results indicate that the C609T polymorphism of the NQO1 gene is an important genetic risk factor in cancer.
Collapse
|