1
|
Yu S, Wang Y, Ren W, Fang Y, Wang L, Zhang Y, Song C, Luo X. Comprehensive genome-wide analysis of the GmFRIGIDA gene family in soybean: identification, characterization, and expression dynamics. FRONTIERS IN PLANT SCIENCE 2025; 16:1536866. [PMID: 40129743 PMCID: PMC11932152 DOI: 10.3389/fpls.2025.1536866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/07/2025] [Indexed: 03/26/2025]
Abstract
Background Frigida (FRI) genes are crucial for regulating flowering time in plants. While the biological importance of the Frigida-like (FRL) gene family has been recognized in Arabidopsis, a systematic analysis of these genes in soybean is lacking. Characterizing FRL genes in soybean will help uncover their roles in flowering regulation, offering valuable insights for improving soybean adaptation. Results In this study, we identified 16 Frigida genes in soybean, naming them based on their relationship to the FRL genes in Arabidopsis thaliana. These genes are unevenly distributed across thirteen chromosomes. Phylogenetic analysis categorizes Frigida-like proteins from Arabidopsis, soybean, and rice into four distinct subfamilies (I-IV). Our findings indicate that eight GmFRLs arose from whole-genome duplication (WGD) events, alongside two tandem duplication events. Gene structure analysis confirmed that all GmFRL members contain Frigida domains. Additionally, promoter analysis revealed numerous cis-acting elements related to photoperiodic response, suggesting their significant role in soybean's light response mechanisms. RNA-seq data demonstrated variable expression levels of GmFRL genes across tissues, including flower, leaf, pod, and seed, and other tissues, while subcellular localization and qPCR analyses further support their vital role in light responsiveness in soybean. Conclusion In summary, our comprehensive analysis offers valuable insights into the evolution and potential functions of GmFRL genes, emphasizing their significance in photoperiodic responses and establishing a foundation for further research on the GmFRL family.
Collapse
Affiliation(s)
- Song Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yuxuan Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, China
| | - Wenwen Ren
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, China
| | - Yisheng Fang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, China
| | - Leili Wang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, China
| | - Yifei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Chengyang Song
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, China
| | - Xiao Luo
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, China
| |
Collapse
|
2
|
Rahman H, Vikram P, Hu Y, Asthana S, Tanaji A, Suryanarayanan P, Quadros C, Mehta L, Shahid M, Gkanogiannis A, Thushar S, Balazadeh S, Mueller-Roeber B, Becerra Lopez-Lavalle LA, Wei T, Singh RK. Mining genomic regions associated with agronomic and biochemical traits in quinoa through GWAS. Sci Rep 2024; 14:9205. [PMID: 38649738 PMCID: PMC11035704 DOI: 10.1038/s41598-024-59565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Quinoa (Chenopodium quinoa Willd.), an Andean crop, is a facultative halophyte food crop recognized globally for its high nutritional value and plasticity to adapt to harsh conditions. We conducted a genome-wide association study on a diverse set of quinoa germplasm accessions. These accessions were evaluated for the following agronomic and biochemical traits: days to 50% flowering (DTF), plant height (PH), panicle length (PL), stem diameter (SD), seed yield (SY), grain diameter (GD), and thousand-grain weight (TGW). These accessions underwent genotyping-by-sequencing using the DNBSeq-G400R platform. Among all evaluated traits, TGW represented maximum broad-sense heritability. Our study revealed average SNP density of ≈ 3.11 SNPs/10 kb for the whole genome, with the lowest and highest on chromosomes Cq1B and Cq9A, respectively. Principal component analysis clustered the quinoa population in three main clusters, one clearly representing lowland Chilean accessions, whereas the other two groups corresponded to germplasm from the highlands of Peru and Bolivia. In our germplasm set, we estimated linkage disequilibrium decay to be ≈ 118.5 kb. Marker-trait analyses revealed major and consistent effect associations for DTF on chromosomes 3A, 4B, 5B, 6A, 7A, 7B and 8B, with phenotypic variance explained (PVE) as high as 19.15%. Nine associations across eight chromosomes were also found for saponin content with 20% PVE by qSPN5A.1. More QTLs were identified for PL and TGW on multiple chromosomal locations. We identified putative candidate genes in the genomic regions associated with DTF and saponin content. The consistent and major-effect genomic associations can be used in fast-tracking quinoa breeding for wider adaptation across marginal environments.
Collapse
Affiliation(s)
- Hifzur Rahman
- International Center for Biosaline Agriculture, Dubai, UAE.
| | - Prashant Vikram
- International Center for Biosaline Agriculture, Dubai, UAE
- SGT University, Gurugram, Haryana, India
| | - Yulan Hu
- BGI-Research, 518083, Shenzhen, China
- BGI Research, 430074, Wuhan, China
| | | | - Abhinav Tanaji
- Birla Institute of Technology and Science Pilani, Dubai Campus, Dubai, UAE
| | | | - Chris Quadros
- Birla Institute of Technology and Science Pilani, Dubai Campus, Dubai, UAE
| | - Lovely Mehta
- International Center for Biosaline Agriculture, Dubai, UAE
| | | | | | | | - Salma Balazadeh
- Institute of Biology Leiden, Sylvius Laboratory, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Bernd Mueller-Roeber
- Department of Molecular Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
| | | | - Tong Wei
- International Center for Biosaline Agriculture, Dubai, UAE.
- BGI-Research, 518083, Shenzhen, China.
- BGI Research, 430074, Wuhan, China.
| | | |
Collapse
|
3
|
Surkova SY, Samsonova MG. Mechanisms of Vernalization-Induced Flowering in Legumes. Int J Mol Sci 2022; 23:ijms23179889. [PMID: 36077286 PMCID: PMC9456104 DOI: 10.3390/ijms23179889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Vernalization is the requirement for exposure to low temperatures to trigger flowering. The best knowledge about the mechanisms of vernalization response has been accumulated for Arabidopsis and cereals. In Arabidopsis thaliana, vernalization involves an epigenetic silencing of the MADS-box gene FLOWERING LOCUS C (FLC), which is a flowering repressor. FLC silencing releases the expression of the main flowering inductor FLOWERING LOCUS T (FT), resulting in a floral transition. Remarkably, no FLC homologues have been identified in the vernalization-responsive legumes, and the mechanisms of cold-mediated transition to flowering in these species remain elusive. Nevertheless, legume FT genes have been shown to retain the function of the main vernalization signal integrators. Unlike Arabidopsis, legumes have three subclades of FT genes, which demonstrate distinct patterns of regulation with respect to environmental cues and tissue specificity. This implies complex mechanisms of vernalization signal propagation in the flowering network, that remain largely elusive. Here, for the first time, we summarize the available information on the genetic basis of cold-induced flowering in legumes with a special focus on the role of FT genes.
Collapse
|
4
|
Ergon Å, Milvang ØW, Skøt L, Ruttink T. Identification of loci controlling timing of stem elongation in red clover using genotyping by sequencing of pooled phenotypic extremes. Mol Genet Genomics 2022; 297:1587-1600. [PMID: 36001174 DOI: 10.1007/s00438-022-01942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
Abstract
MAIN CONCLUSION Through selective genotyping of pooled phenotypic extremes, we identified a number of loci and candidate genes putatively controlling timing of stem elongation in red clover. We have identified candidate genes controlling the timing of stem elongation prior to flowering in red clover (Trifolium pratense L.). This trait is of ecological and agronomic significance, as it affects fitness, competitivity, climate adaptation, forage and seed yield, and forage quality. We genotyped replicate pools of phenotypically extreme individuals (early and late-elongating) within cultivar Lea using genotyping-by-sequencing in pools (pool-GBS). After calling and filtering SNPs and GBS locus haplotype polymorphisms, we estimated allele frequencies and searched for markers with significantly different allele frequencies in the two phenotypic groups using BayeScan, an FST-based test utilizing replicate pools, and a test based on error variance of replicate pools. Of the three methods, BayeScan was the least stringent, and the error variance-based test the most stringent. Fifteen significant markers were identified in common by all three tests. The candidate genes flanking the markers include genes with potential roles in the vernalization, autonomous, and photoperiod regulation of floral transition, hormonal regulation of stem elongation, and cell growth. These results provide a first insight into the potential genes and mechanisms controlling transition to stem elongation in a perennial legume, which lays a foundation for further functional studies of the genetic determinants regulating this important trait.
Collapse
Affiliation(s)
- Åshild Ergon
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| | - Øystein W Milvang
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Leif Skøt
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, B-9090 Melle, Belgium
| |
Collapse
|
5
|
Xu YY, Zeng RF, Zhou H, Qiu MQ, Gan ZM, Yang YL, Hu SF, Zhou JJ, Hu CG, Zhang JZ. Citrus FRIGIDA cooperates with its interaction partner dehydrin to regulate drought tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:164-182. [PMID: 35460135 DOI: 10.1111/tpj.15785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Drought is a major environmental stress that severely affects plant growth and crop productivity. FRIGIDA (FRI) is a key regulator of flowering time and drought tolerance in model plants. However, little is known regarding its functions in woody plants, including citrus. Thus, we explored the functional role of the citrus FRI ortholog (CiFRI) under drought. Drought treatment induced CiFRI expression. CiFRI overexpression enhanced drought tolerance in transgenic Arabidopsis and citrus, while CiFRI suppression increased drought susceptibility in citrus. Moreover, transcriptomic profiling under drought conditions suggested that CiFRI overexpression altered the expression of numerous genes involved in the stress response, hormone biosynthesis, and signal transduction. Mechanistic studies revealed that citrus dehydrin likely protects CiFRI from stress-induced degradation, thereby enhancing plant drought tolerance. In addition, a citrus brassinazole-resistant (BZR) transcription factor family member (CiBZR1) directly binds to the CiFRI promoter to activate its expression under drought conditions. CiBZR1 also enhanced drought tolerance in transgenic Arabidopsis and citrus. These findings further our understanding of the molecular mechanisms underlying the CiFRI-mediated drought stress response in citrus.
Collapse
Affiliation(s)
- Yuan-Yuan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei-Qi Qiu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi-Lin Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si-Fan Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Jing Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
You J, Liu H, Wang S, Luo W, Gou L, Tang H, Mu Y, Deng M, Jiang Q, Chen G, Qi P, Peng Y, Tang L, Habib A, Wei Y, Zheng Y, Lan X, Ma J. Spike Density Quantitative Trait Loci Detection and Analysis in Tetraploid and Hexaploid Wheat Recombinant Inbred Line Populations. FRONTIERS IN PLANT SCIENCE 2021; 12:796397. [PMID: 34975986 PMCID: PMC8716915 DOI: 10.3389/fpls.2021.796397] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/26/2021] [Indexed: 05/15/2023]
Abstract
Spike density (SD) is an agronomically important character in wheat. In addition, an optimized spike structure is a key basis for high yields. Identification of quantitative trait loci (QTL) for SD has provided a genetic basis for constructing ideal spike morphologies in wheat. In this study, two recombinant inbred line (RIL) populations (tetraploid RIL AM and hexaploid RIL 20828/SY95-71 (2SY)) previously genotyped using the wheat55K SNP array were used to identify SD QTL. A total of 18 QTL were detected, and three were major and one was stably expressed (QSd.sau-2SY-7A.2, QSd.sau-AM-5A.2, QSd.sau-AM-7B, and QSd.sau-2SY-2D). They can explain up to 23.14, 19.97, 12.00, and 9.44% of phenotypic variation, respectively. QTL × environment and epistatic interactions for SD were further analyzed. In addition, pyramiding analysis further revealed that there were additive effects between QSd.sau-2SY-2D and QSd.sau-2SY-7A.2 in 2SY, and QSd.sau-AM-5A.2 and QSd.sau-AM-7B in AM. Pearson's correlation between SD and other agronomic traits, and effects of major or stable QTL on yield related traits indicated SD significantly impacted spike length (SL), spikelet number per spike (SNS) and kernel length (KL). Several genes related to spike development within the physical intervals of major or stable QTL were predicted and discussed. Collectively, our research identified QTL with potential applications for modern wheat breeding and broadening the genetic basis of SD.
Collapse
Affiliation(s)
- Jianing You
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Surong Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lulu Gou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Mu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuanying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Liwei Tang
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Investigation of genes associated with petal variations between diploid and autotetraploid in Chinese cabbage (Brassica rapa L. ssp. pekinensis) by RNA-seq and sRNA-seq. Mol Genet Genomics 2020; 295:1459-1476. [PMID: 32683543 DOI: 10.1007/s00438-020-01713-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/11/2020] [Indexed: 11/27/2022]
Abstract
Polyploidy promotes morphological, physiological, and reproductive diversity in plants. The imminent effect of chromosome doubling in plants is the enlargement of organs such as flowers and fruits, which increases the commercial value of crops. Flowering plays a vital role in the growth and development of angiosperms. Here, we prepared an isolated microspore culture of 'FT', a doubled haploid (DH) line of Chinese cabbage (Brassica rapa L. ssp. pekinensis), and obtained diploid and autotetraploid plants with the same genetic background. Compared with diploids, the autotetraploids were characterized by large floral organs, dark petals, delayed flowering, and reduced fertility. The indole-3-acetic acid (IAA) and jasmonic acid (JA) levels in autotetraploid petals were significantly higher and the abscisic acid (ABA) level was significantly lower than those in the diploid petals. The lutein level in autotetraploid petals was nearly two times higher than that in the diploid petals. A comparative transcriptome analysis revealed 14,412 differentially expressed genes (DEGs) between the diploids and autotetraploids, and they were enriched in 117 Gene Ontology terms and 110 Kyoto Encyclopedia of Genes and Genomes pathways. We detected 231 DEGs related to phytohormone signal transduction and 29 DEGs involved in carotenoid biosynthesis. An miRNA-target mRNA analysis showed that 32 DEGs regulated by 16 DEMs were associated with flowering timing (BraA03000336, BraA09004319, and BraA09000515), petal development (BraA05002408, BraA01004006, BraA09004069, and BraA04000966), flower opening (BraA07000350), and pollen development (BraA01000720, BraA09005727, and BraA01000253). This study provides information to help elucidate the molecular mechanisms underlying phenotypic variations induced by autopolyploidy in Chinese cabbage.
Collapse
|
8
|
Wyder S, Rivera A, Valdés AE, Cañal MJ, Gagliardini V, Fernández H, Grossniklaus U. Differential gene expression profiling of one- and two-dimensional apogamous gametophytes of the fern Dryopteris affinis ssp. affinis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:302-311. [PMID: 32000107 DOI: 10.1016/j.plaphy.2020.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/16/2019] [Accepted: 01/15/2020] [Indexed: 05/01/2023]
Abstract
Apomixis was originally defined as the replacement of sexual reproduction by an asexual process that does not involve fertilization but, in angiosperms, it is often used in the more restricted sense of asexual reproduction through seeds. In ferns, apomixis combines the production of unreduced spores (diplospory) and the formation of sporophytes from somatic cells of the prothallium (apogamy). The genes that control the onset of apogamy in ferns are largely unknown. In this study, we describe the gametophyte transcriptome of the apogamous fern Dryopteris affinis ssp. affinis using an RNA-Seq approach to compare the gene expression profiles of one- and two-dimensional gametophytes, the latter containing apogamic centers. After collapsing highly similar de novo transcripts, we obtained 166,191 unigenes, of which 30% could be annotated using public databases. Multiple quality metrics indicate a good quality of the de novo transcriptome with a low level of fragmentation. Our data show a total of 10,679 genes (6% of all genes) to be differentially expressed between gametophytes of filamentous (one-dimensional) and prothallial (two-dimensional) architecture. 6,110 genes were up-regulated in two-dimensional relative to one-dimensional gametophytes, some of which are implicated in the regulation of meristem growth, auxin signaling, reproduction, and sucrose metabolism. 4,570 genes were down-regulated in two-dimensional versus one-dimensional gametophytes, which are enriched in stimulus and defense genes, as well as genes involved in epigenetic gene regulation and ubiquitin degradation. Our results provide insights into free-living gametophyte development, focusing on the filamentous-to-prothallus growth transition, and provide a useful resource for further investigations of asexual reproduction.
Collapse
Affiliation(s)
- Stefan Wyder
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Alejandro Rivera
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, c) Catedrático R Uría s/n, 33071, Oviedo, Spain
| | - Ana E Valdés
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - María Jesús Cañal
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, c) Catedrático R Uría s/n, 33071, Oviedo, Spain
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Helena Fernández
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, c) Catedrático R Uría s/n, 33071, Oviedo, Spain.
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| |
Collapse
|
9
|
Chen W, Wang P, Wang D, Shi M, Xia Y, He Q, Dang J, Guo Q, Jing D, Liang G. EjFRI, FRIGIDA ( FRI) Ortholog from Eriobotrya japonica, Delays Flowering in Arabidopsis. Int J Mol Sci 2020; 21:ijms21031087. [PMID: 32041257 PMCID: PMC7038142 DOI: 10.3390/ijms21031087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
In the model species Arabidopsis thaliana, FRIGIDA (FRI) is a key regulator of flowering time and can inhibit flowering without vernalization. However, little information is available on the function in the Rosaceae family. Loquat (Eriobotrya japonica) belongs to the family Rosaceae and is a distinctive species, in which flowering can be induced without vernalization, followed by blooming in late-autumn or winter. To investigate the functional roles of FRI orthologs in this non-vernalization species, we isolated an FRI ortholog, dubbed as EjFRI, from loquat. Analyses of the phylogenetic tree and protein sequence alignment showed that EjFRI is assigned to eurosids I FRI lineage. Expression analysis revealed that the highest expression level of EjFRI was after flower initiation. Meanwhile, EjFRI was widely expressed in different tissues. Subcellular localization of EjFRI was only detected to be in the nucleus. Ectopic expression of EjFRI in wild-type Arabidopsis delayed flowering time. The expression levels of EjFRI in transgenic wild-type Arabidopsis were significantly higher than those of nontransgenic wild-type lines. However, the expression levels of AtFRI showed no significant difference between transgenic and nontransgenic wild-type lines. Furthermore, the upregulated AtFLC expression in the transgenic lines indicated that EjFRI functioned similarly to the AtFRI of the model plant Arabidopsis. Our study provides a foundation to further explore the characterization of EjFRI, and also contributes to illuminating the molecular mechanism about flowering in loquat.
Collapse
Affiliation(s)
- Weiwei Chen
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Peng Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Dan Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Min Shi
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Qiao He
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Jiangbo Dang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Danlong Jing
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
- Correspondence: (D.J.); (G.L.); Tel.: +86-023-6825-0383 (D.J. & G.L.)
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
- Correspondence: (D.J.); (G.L.); Tel.: +86-023-6825-0383 (D.J. & G.L.)
| |
Collapse
|
10
|
Adhikari L, Makaju SO, Missaoui AM. QTL mapping of flowering time and biomass yield in tetraploid alfalfa (Medicago sativa L.). BMC PLANT BIOLOGY 2019; 19:359. [PMID: 31419945 PMCID: PMC6697951 DOI: 10.1186/s12870-019-1946-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/26/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND The genetic and genomic basis of flowering time and biomass yield in alfalfa (Medicago sativa L.) remains poorly understood mainly due to the autopolyploid nature of the species and the lack of adequate genomic resources. We constructed linkage maps using genotyping-by-sequencing (GBS) based single dose allele (SDA) SNP and mapped alfalfa timing of flowering (TOF), spring yield (SY), and cumulative summer biomass (CSB) in a pseudo-testcross F1 population derived from a fall dormant (3010) and a non-dormant (CW 1010) cultivars. We analyzed the quantitative trait loci (QTL) to identify conserved genomic regions and detected molecular markers and potential candidate genes associated with the traits to improve alfalfa and provide genomic resources for the future studies. RESULTS This study showed that both fall dormant and non-dormant alfalfa cultivars harbored QTL for early and late flowering, suggesting that flowering time in alfalfa is not an indicator of its fall dormancy (FD) levels. A weak phenotypic correlation between the flowering time and fall dormancy (FD) in F1 and checks also corroborated that alfalfa FD and TOF are not the predictors of one another. The relationship between flowering time and alfalfa biomass yield was not strong, but the non-dormant had relatively more SY than dormant. Therefore, selecting superior alfalfa cultivars that are non-dormant, winter-hardy, and early flowering would allow for an early spring harvest with enhanced biomass. In this study, we found 25 QTL for TOF, 17 for SY and six QTL for CSB. Three TOF related QTL were stable and four TOF QTL were detected in the corresponding genomic locations of the flowering QTL of M. truncatula, an indication of possible evolutionarily conserved regions. The potential candidate genes for the SNP sequences of QTL regions were identified for all three traits and these genes would be potential targets for further molecular studies. CONCLUSIONS This research showed that variation in alfalfa flowering time after spring green up has no association with dormancy levels. Here we reported QTL, markers, and potential candidate genes associated with spring flowering time and biomass yield of alfalfa, which constitute valuable genomic resources for improving these traits via marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Laxman Adhikari
- Institute of Plant Breeding, Genetics and Genomics and Department of Crop and Soil Sciences, The University of Georgia, Athens, GA, USA
| | - Shiva Om Makaju
- Institute of Plant Breeding, Genetics and Genomics and Department of Crop and Soil Sciences, The University of Georgia, Athens, GA, USA
| | - Ali M Missaoui
- Institute of Plant Breeding, Genetics and Genomics and Department of Crop and Soil Sciences, The University of Georgia, Athens, GA, USA.
| |
Collapse
|