1
|
Zhang X, Yang H, Li H, Chen T, Ruan Y, Ren C, Luo P, Wang Y, Liu B, Li H, Zhong P, Zhang J, Jiang X, Hu C. Molecular Identification of Anion Exchange Protein 3 in Pacific White Shrimp ( Litopenaeus vannamei): mRNA Profiles for Tissues, Ontogeny, Molting, and Ovarian Development and Its Potential Role in Stress-Induced Gill Damage. Front Physiol 2021; 12:726600. [PMID: 34658912 PMCID: PMC8514663 DOI: 10.3389/fphys.2021.726600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Bicarbonate (HCO3 -) transport mechanisms play an essential role in the acid-base homeostasis of aquatic animals, and anion exchange protein 3 (AE3) is a membrane transport protein that exchanges Cl-/HCO3 - across the cell membrane to regulate the intracellular pH. In this study, the full-length cDNA of AE3 (Lv-AE3) was obtained from the Pacific white shrimp (Litopenaeus vannamei). The Lv-AE3 cDNA is 4,943 bp in length, contains an open reading frame of 2,850 bp, coding for a protein of 949 amino acids with 12 transmembrane domains. Lv-AE3 shows high sequence homology with other AE3 at the protein level. Lv-AE3 mRNA was ubiquitously detected in all tissues selected, with the highest expression level in the gill, followed by the ovary, eyestalk and brain. By in situ hybridization, Lv-AE3-positive cells were shown predominant localization in the secondary gill filaments. The expression levels of Lv-AE3 were further investigated during the essential life processes of shrimp, including ontogeny, molting, and ovarian development. In this case, the spatiotemporal expression profiles of Lv-AE3 in L. vannamei were highly correlated with the activities of water and ion absorption; for example, increased mRNA levels were present after hatching, during embryonic development, after ecdysis during the molt cycle, and in the stage IV ovary during gonadal development. After low/high pH and low/high salinity challenges, the transcript levels of Lv-AE3 were reduced in the gill, while the cell apoptosis rate increased. In addition, knockdown of Lv-AE3 mRNA expression induced cell apoptosis in the gill, indicating a potential link between Lv-AE3 and gill damage. Altogether, this study thoroughly investigated the relationship between the mRNA expression profiles of Lv-AE3 and multiple developmental and physiological processes in L. vannamei, and it may benefit the protection of crustaceans from fluctuated aquatic environments.
Collapse
Affiliation(s)
- Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Yang
- College of Life Sciences, Hebei University, Baoding, China
| | - Hongmei Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Ruan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yanhong Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Bing Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huo Li
- Jinyang Biotechnology Co. Ltd., Maoming, China
| | - Ping Zhong
- Institute of Hydrobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiquan Zhang
- College of Life Sciences, Hebei University, Baoding, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Huerlimann R, Maes GE, Maxwell MJ, Mobli M, Launikonis BS, Jerry DR, Wade NM. Multi-species transcriptomics reveals evolutionary diversity in the mechanisms regulating shrimp tail muscle excitation-contraction coupling. Gene 2020; 752:144765. [PMID: 32413480 DOI: 10.1016/j.gene.2020.144765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
The natural flight response in shrimp is powered by rapid contractions of the abdominal muscle fibres to propel themselves backwards away from perceived danger. This muscle contraction is dependent on repetitive depolarization of muscle plasma membrane, triggering tightly spaced cytoplasmic [Ca2+] transients and rapidly rising tetanic force responses. To achieve such high amplitude and high frequency of Ca2+ transients requires a high abundance of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) to rapidly clear cytoplasmic Ca2+ between each transient and an efficient Ca2+ release system consisting of the Ryanodine Receptor (RyR), and voltage gated Ca2+ channels (CaVs). With the aim to expand our knowledge of muscle gene function and identify orthologous genes regulating muscle excitation-contraction (EC) coupling, this study assembled nine Penaeid shrimp muscle transcriptomes. On average, the nine transcriptomes contained 27,000 contigs, with an annotation rate of 36% and a BUSCO completeness of 70%. Despite maintaining their function, the crustacean RyR and CaV proteins showed evidence of significant diversification from mammalian orthologs, while SERCA remained more conserved. Several key components of protein interaction were conserved, while others showed distinct crustacean specific evolutionary adaptations. Lastly, this study revealed approximately 1,000 orthologous genes involved in muscle specific processes present across all nine species.
Collapse
Affiliation(s)
- Roger Huerlimann
- ARC Research Hub for Advanced Prawn Breeding, Australia; Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia.
| | - Gregory E Maes
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven 3000, Belgium; Centre for Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Michael J Maxwell
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bradley S Launikonis
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dean R Jerry
- ARC Research Hub for Advanced Prawn Breeding, Australia; Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Tropical Futures Institute, James Cook University, 149 Sims Drive, Singapore 387380, Singapore
| | - Nicholas M Wade
- ARC Research Hub for Advanced Prawn Breeding, Australia; CSIRO Agriculture and Food, Aquaculture Program, 306 Carmody Road, St Lucia, QLD 4067
| |
Collapse
|
3
|
Koyama H, Mizusawa N, Hoashi M, Tan E, Yasumoto K, Jimbo M, Ikeda D, Yokoyama T, Asakawa S, Piyapattanakorn S, Watabe S. Changes in free amino acid concentrations and associated gene expression profiles in the abdominal muscle of kuruma shrimp Marsupenaeus japonicus acclimated at different salinities. J Exp Biol 2018; 221:jeb.168997. [DOI: 10.1242/jeb.168997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/11/2018] [Indexed: 12/21/2022]
Abstract
Shrimps inhabiting the coastal water can survive in a wide range of salinity. However, the molecular mechanisms involved in their acclimation to different environmental salinities have remained largely unknown. In the present study, we acclimated kuruma shrimp Marsupenaeus japonicus at 1.7 %, 3.4 % and 4.0 % salinities. After acclimating for 6, 12, 24 and 72 h, we determined free amino acid concentrations in their abdominal muscle, and performed RNA-seq analysis on this muscle. The concentrations of free amino acids were clearly altered depending on salinity after acclimating for 24 h. Glutamine and alanine concentrations were markedly increased following the increase of salinity. In association with such changes, many genes related to amino acid metabolism changed their expression levels. In particular, the increase of the expression level of the gene encoding glutamate-ammonia ligase which functions in the glutamine metabolism appeared to be relevant to the increased glutamine concentration at high salinity. Furthermore, the alanine concentration increased at high salinity was likely to be associated with the decrease in the expression levels of the alanine-glyoxylate transaminase gene. Thus, there is a possibility that changes in the concentration of free amino acids for osmoregulation in kuruma shrimp are regulated by changes in the expression levels of genes related to amino acid metabolism.
Collapse
Affiliation(s)
- Hiroki Koyama
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Nanami Mizusawa
- Kitasato University School of Marine Biosciences, Kanagawa 252-0373, Japan
| | - Masataka Hoashi
- Kitasato University School of Marine Biosciences, Kanagawa 252-0373, Japan
| | - Engkong Tan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ko Yasumoto
- Kitasato University School of Marine Biosciences, Kanagawa 252-0373, Japan
| | - Mitsuru Jimbo
- Kitasato University School of Marine Biosciences, Kanagawa 252-0373, Japan
| | - Daisuke Ikeda
- Kitasato University School of Marine Biosciences, Kanagawa 252-0373, Japan
| | - Takehiko Yokoyama
- Kitasato University School of Marine Biosciences, Kanagawa 252-0373, Japan
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Sanit Piyapattanakorn
- Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Shugo Watabe
- Kitasato University School of Marine Biosciences, Kanagawa 252-0373, Japan
| |
Collapse
|
5
|
Transcriptome and Molecular Pathway Analysis of the Hepatopancreas in the Pacific White Shrimp Litopenaeus vannamei under Chronic Low-Salinity Stress. PLoS One 2015; 10:e0131503. [PMID: 26147449 PMCID: PMC4492601 DOI: 10.1371/journal.pone.0131503] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/03/2015] [Indexed: 11/29/2022] Open
Abstract
The Pacific white shrimp Litopenaeus vannamei is a euryhaline penaeid species that shows ontogenetic adaptations to salinity, with its larvae inhabiting oceanic environments and postlarvae and juveniles inhabiting estuaries and lagoons. Ontogenetic adaptations to salinity manifest in L. vannamei through strong hyper-osmoregulatory and hypo-osmoregulatory patterns and an ability to tolerate extremely low salinity levels. To understand this adaptive mechanism to salinity stress, RNA-seq was used to compare the transcriptomic response of L. vannamei to changes in salinity from 30 (control) to 3 practical salinity units (psu) for 8 weeks. In total, 26,034 genes were obtained from the hepatopancreas tissue of L. vannamei using the Illumina HiSeq 2000 system, and 855 genes showed significant changes in expression under salinity stress. Eighteen top Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly involved in physiological responses, particularly in lipid metabolism, including fatty-acid biosynthesis, arachidonic acid metabolism and glycosphingolipid and glycosaminoglycan metabolism. Lipids or fatty acids can reduce osmotic stress in L. vannamei by providing additional energy or changing the membrane structure to allow osmoregulation in relevant organs, such as the gills. Steroid hormone biosynthesis and the phosphonate and phosphinate metabolism pathways were also involved in the adaptation of L. vannamei to low salinity, and the differential expression patterns of 20 randomly selected genes were validated by quantitative real-time PCR (qPCR). This study is the first report on the long-term adaptive transcriptomic response of L. vannamei to low salinity, and the results will further our understanding of the mechanisms underlying osmoregulation in euryhaline crustaceans.
Collapse
|