1
|
Abebe BK, Wang H, Li A, Zan L. A review of the role of transcription factors in regulating adipogenesis and lipogenesis in beef cattle. J Anim Breed Genet 2024; 141:235-256. [PMID: 38146089 DOI: 10.1111/jbg.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023]
Abstract
In the past few decades, genomic selection and other refined strategies have been used to increase the growth rate and lean meat production of beef cattle. Nevertheless, the fast growth rates of cattle breeds are often accompanied by a reduction in intramuscular fat (IMF) deposition, impairing meat quality. Transcription factors play vital roles in regulating adipogenesis and lipogenesis in beef cattle. Meanwhile, understanding the role of transcription factors in regulating adipogenesis and lipogenesis in beef cattle has gained significant attention to increase IMF deposition and meat quality. Therefore, the aim of this paper was to provide a comprehensive summary and valuable insight into the complex role of transcription factors in adipogenesis and lipogenesis in beef cattle. This review summarizes the contemporary studies in transcription factors in adipogenesis and lipogenesis, genome-wide analysis of transcription factors, epigenetic regulation of transcription factors, nutritional regulation of transcription factors, metabolic signalling pathways, functional genomics methods, transcriptomic profiling of adipose tissues, transcription factors and meat quality and comparative genomics with other livestock species. In conclusion, transcription factors play a crucial role in promoting adipocyte development and fatty acid biosynthesis in beef cattle. They control adipose tissue formation and metabolism, thereby improving meat quality and maintaining metabolic balance. Understanding the processes by which these transcription factors regulate adipose tissue deposition and lipid metabolism will simplify the development of marbling or IMF composition in beef cattle.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
2
|
Hao Z, Jin X, Hickford JGH, Zhou H, Wang L, Wang J, Luo Y, Hu J, Liu X, Li S, Li M, Shi B, Ren C. Screening and identification of lncRNAs in preadipocyte differentiation in sheep. Sci Rep 2024; 14:5260. [PMID: 38438565 PMCID: PMC10912770 DOI: 10.1038/s41598-024-56091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
Studies of preadipocyte differentiation and fat deposition in sheep have mainly focused on functional genes, and with no emphasis placed on the role that long non-coding RNAs (lncRNAs) may have on the activity of those genes. Here, the expression profile of lncRNAs in ovine preadipocyte differentiation was investigated and the differentially expressed lncRNAs were screened on day 0 (D0), day 2(D2) and day 8(D8) of ovine preadipocyte differentiation, with their target genes being predicted. The competing endogenous RNA (ceRNA) regulatory network was constructed by GO and KEGG enrichment analysis for functional annotation, and some differentially expressed lncRNAs were randomly selected to verify the RNA-Seq results by RT-qPCR. In the study, a total of 2517 novel lncRNAs and 3943 known lncRNAs were identified from ovine preadipocytes at the three stages of differentiation, with the highest proportion being intergenic lncRNAs. A total of 3455 lncRNAs were expressed at all three stages of preadipocyte differentiation, while 214, 226 and 228 lncRNAs were uniquely expressed at day 0, day 2 and day 8, respectively. By comparing the expression of the lncRNAs between the three stages of differentiation stages, a total of 405, 272 and 359 differentially expressed lncRNAs were found in D0-vs-D2, D0-vs-D8, and D2-vs-D8, respectively. Functional analysis revealed that the differentially expressed lncRNAs were enriched in signaling pathways related to ovine preadipocyte differentiation, such as mitogen-activated protein kinase (MAPK) pathway, the phosphoinositide 3-kinase protein kinase B (PI3K-Akt) pathway, and the transforming growth factor beta (TGF-β) pathway. In summary, lncRNAs from preadipocytes at different stages of differentiation in sheep were identified and screened using RNA-Seq technology, and the regulatory mechanisms of lncRNAs in preadipocyte differentiation and lipid deposition were explored. This study provides a theoretical reference for revealing the roles of lncRNAs in ovine preadipocyte differentiation and also offers a theoretical basis for further understanding the regulatory mechanisms of ovine preadipocyte differentiation.
Collapse
Affiliation(s)
- Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiayang Jin
- Academic Animal & Veterinary Science, Qinghai University, Xining, China
| | - Jon G H Hickford
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gene-Marker Laboratory, Faculty of Agriculture and Life Science, Lincoln University, Lincoln, 7647, New Zealand
| | - Huitong Zhou
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gene-Marker Laboratory, Faculty of Agriculture and Life Science, Lincoln University, Lincoln, 7647, New Zealand
| | - Longbin Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Mingna Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chunyan Ren
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Tan Z, Jiang H. Molecular and Cellular Mechanisms of Intramuscular Fat Development and Growth in Cattle. Int J Mol Sci 2024; 25:2520. [PMID: 38473768 DOI: 10.3390/ijms25052520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Intramuscular fat, also referred to as marbling fat, is the white fat deposited within skeletal muscle tissue. The content of intramuscular fat in the skeletal muscle, particularly the longissimus dorsi muscle, of cattle is a critical determinant of beef quality and value. In this review, we summarize the process of intramuscular fat development and growth, the factors that affect this process, and the molecular and epigenetic mechanisms that mediate this process in cattle. Compared to other species, cattle have a remarkable ability to accumulate intramuscular fat, partly attributed to the abundance of sources of fatty acids for synthesizing triglycerides. Compared to other adipose depots such as subcutaneous fat, intramuscular fat develops later and grows more slowly. The commitment and differentiation of adipose precursor cells into adipocytes as well as the maturation of adipocytes are crucial steps in intramuscular fat development and growth in cattle. Each of these steps is controlled by various factors, underscoring the complexity of the regulatory network governing adipogenesis in the skeletal muscle. These factors include genetics, epigenetics, nutrition (including maternal nutrition), rumen microbiome, vitamins, hormones, weaning age, slaughter age, slaughter weight, and stress. Many of these factors seem to affect intramuscular fat deposition through the transcriptional or epigenetic regulation of genes directly involved in the development and growth of intramuscular fat. A better understanding of the molecular and cellular mechanisms by which intramuscular fat develops and grows in cattle will help us develop more effective strategies to optimize intramuscular fat deposition in cattle, thereby maximizing the quality and value of beef meat.
Collapse
Affiliation(s)
- Zhendong Tan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Honglin Jiang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Wei D, Zhang L, Raza SHA, Zhang J, Juan Z, Al-Amrah H, Al Abdulmonem W, Alharbi YM, Zhang G, Liang X. Interaction of C/EBPβ with SMAD2 and SMAD4 genes induces the formation of lipid droplets in bovine myoblasts. Funct Integr Genomics 2023; 23:191. [PMID: 37249689 DOI: 10.1007/s10142-023-01115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
As a key component of Transforming growth factor-β (TGF-β) pathway, Smad2 has many crucial roles in a variety of cellular processes, but it cannot bind DNA without complex formation with Smad4. In the present study, the molecular mechanism in the progress of myogenesis underlying transcriptional regulation of SMAD2 and SMAD4 had been clarified. The result showed the inhibition between SMAD2 and SMAD4, which promotes and inhibits bovine myoblast differentiation, respectively. Further, the characterization of promoter region of SMAD2 and SMAD4 was analyzed, and identified C/EBPβ directly bound to the core region of both SMAD2 and SMAD4 genes promoter and stimulated the transcriptional activity. However, C/EBPβ has lower expression in myoblasts which plays vital function in the transcriptional networks controlling adipogenesis, while the overexpression of C/EBPβ gene in myoblasts significantly increased SMAD2 and SMAD4 gene expression, induced the formation of lipid droplet in bovine myoblasts, and promoted the expression of adipogenesis-specific genes. Collectively, our results showed that C/EBPβ may play an important role in the trans-differentiation and dynamic equilibrium of myoblasts into adipocyte cells via promoting an increase in SMAD2 and SMAD4 gene levels. These results will provide an important basis for further understanding of the TGFβ pathway and C/EBPβ gene during myogenic differentiation.
Collapse
Affiliation(s)
- Dawei Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Le Zhang
- Institute of Physical Education, Yan'an University, Yan'an, 716000, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiupan Zhang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750021, China
| | - Zhao Juan
- College of Animal Science and Technology, South China Agricultural University, Guangzhou, 510642, China
| | - Hadba Al-Amrah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Yousef Mesfer Alharbi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Guijie Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| | - Xiaojun Liang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750021, China.
| |
Collapse
|
5
|
C/EBPβ converts bovine fibroblasts to adipocytes without hormone cocktail induction. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
6
|
Liu S, Huang J, Wang X, Ma Y. Transcription factors regulate adipocyte differentiation in beef cattle. Anim Genet 2020; 51:351-357. [PMID: 32253788 DOI: 10.1111/age.12931] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2020] [Indexed: 12/13/2022]
Abstract
Intramuscular fat (IMF) content is a critical factor affecting meat flavor, juiciness, tenderness, and color. Therefore, the improvement of IMF content is one of the hotspots of animal science research. Fat deposition is the result of a combination of increased number of fat cells and cellular hypertrophy. In addition, transcription factors can influence the number of adipocytes and regulate lipid metabolism. The progress of the transcription factors regulating adipocyte differentiation in beef cattle, including IMF cell sources, and promoting or inhibiting adipogenic differentiation of transcription factors is reviewed in this paper.
Collapse
Affiliation(s)
- S Liu
- School of Agriculture, Ningxia University, Helan Mountain West Road 489, 750021, Yin Chuan, Ningxia Hui Autonomous Region, China
| | - J Huang
- College of Life Sciences, Xinyang Normal University, Nanhu Road 237, 464000, Xinyang, Henan Province, China
| | - X Wang
- School of Agriculture, Ningxia University, Helan Mountain West Road 489, 750021, Yin Chuan, Ningxia Hui Autonomous Region, China
| | - Y Ma
- School of Agriculture, Ningxia University, Helan Mountain West Road 489, 750021, Yin Chuan, Ningxia Hui Autonomous Region, China.,College of Life Sciences, Xinyang Normal University, Nanhu Road 237, 464000, Xinyang, Henan Province, China
| |
Collapse
|
7
|
Zhang L, Ning Y, Li P, Zan L. Smad3 influences Smad2 expression via the transcription factor C/EBPα and C/EBPβ during bovine myoblast differentiation. Arch Biochem Biophys 2019; 671:235-244. [PMID: 31071302 DOI: 10.1016/j.abb.2019.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/17/2019] [Accepted: 05/05/2019] [Indexed: 01/14/2023]
Abstract
Transforming growth factor β (TGFβ) has participated in a variety of cellular biological processes. Smad2 and Smad3 are equally important TGFβ downstream effectors in mediating TGFβ signals. However, genes involved in controlling the balance between these two signaling pathways are unknown. In this study, we showed that although Smad2 and Smad3 are structurally similar, with 89% amino acid sequence similarity in bovine, Smad3 significantly decreased Smad2 mRNA and protein expression during bovine myoblast differentiation, but not by binding on its promoter. Luciferase assays and electrophoretic mobility shift assays (EMSA) demonstrated that the transcription factors C/EBPα and C/EBPβ activate Smad2 promoter activity and expression under high serum medium (GM), whereas the opposite was observed under low serum medium (DM). Moreover, over-expression and interference assays revealed that Smad3 has a different effect on C/EBPα and C/EBPβ expression under GM versus DM conditions. After mutation of the C/EBPα and C/EBPβ binding sites, Smad3 had a reduced effect on Smad2 promoter activity. Therefore, these results demonstrated that Smad3 inhibits Smad2 expression via its transcription factors C/EBPα and C/EBPβ during bovine myoblast differentiation. This novel mechanism of the Smad2/3 genes may offer clues for further investigation of TGFβ signal function.
Collapse
Affiliation(s)
- Le Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China; School of Physical Education, Yan'an University, Yan'an, Shaanxi, China
| | - Yue Ning
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Peiwei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China; National Beef Cattle Improvement Center, Yangling, Shaanxi, China.
| |
Collapse
|
8
|
Wang YN, Yang WC, Li PW, Wang HB, Zhang YY, Zan LS. Myocyte enhancer factor 2A promotes proliferation and its inhibition attenuates myogenic differentiation via myozenin 2 in bovine skeletal muscle myoblast. PLoS One 2018; 13:e0196255. [PMID: 29698438 PMCID: PMC5919640 DOI: 10.1371/journal.pone.0196255] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
Myocyte enhancer factor 2A (MEF2A) is widely distributed in various tissues or organs and plays crucial roles in multiple biological processes. To examine the potential effects of MEF2A on skeletal muscle myoblast, the functional role of MFE2A in myoblast proliferation and differentiation was investigated. In this study, we found that the mRNA expression level of Mef2a was dramatically increased during the myogenesis of bovine skeletal muscle primary myoblast. Overexpression of MEF2A significantly promoted myoblast proliferation, while knockdown of MEF2A inhibited the proliferation and differentiation of myoblast. RT-PCR and western blot analysis revealed that this positive effect of MEF2A on the proliferation of myoblast was carried out by triggering cell cycle progression by activating CDK2 protein expression. Besides, MEF2A was found to be an important transcription factor that bound to the myozenin 2 (MyoZ2) proximal promoter and performed upstream of MyoZ2 during myoblast differentiation. This study provides the first experimental evidence that MEF2A is a positive regulator in skeletal muscle myoblast proliferation and suggests that MEF2A regulates myoblast differentiation via regulating MyoZ2.
Collapse
Affiliation(s)
- Ya-Ning Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center in China, Yangling, Shaanxi, P. R. China
| | - Wu-Cai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center in China, Yangling, Shaanxi, P. R. China
| | - Pei-Wei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center in China, Yangling, Shaanxi, P. R. China
| | - Hong-Bao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center in China, Yangling, Shaanxi, P. R. China
| | - Ying-Ying Zhang
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Lin-Sen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center in China, Yangling, Shaanxi, P. R. China
- National and Provincial Joint Engineering Research Center of Modern Cattle Biotechnology and Applications, Yangling, Shaanxi, P. R. China
- * E-mail:
| |
Collapse
|
9
|
Ectopical expression of FABP4 gene can induce bovine muscle-derived stem cells adipogenesis. Biochem Biophys Res Commun 2017; 482:352-358. [DOI: 10.1016/j.bbrc.2016.11.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 01/13/2023]
|
10
|
Li A, Zhang Y, Zhao Z, Wang M, Zan L. Molecular Characterization and Transcriptional Regulation Analysis of the Bovine PDHB Gene. PLoS One 2016; 11:e0157445. [PMID: 27379520 PMCID: PMC4933360 DOI: 10.1371/journal.pone.0157445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 05/31/2016] [Indexed: 01/15/2023] Open
Abstract
The pyruvate dehydrogenase beta subunit (PDHB) is a subunit of pyruvate dehydrogenase (E1), which catalyzes pyruvate into acetyl-CoA and provides a linkage between the tricarboxylic acid cycle (TCA) and the glycolysis pathway. Previous studies demonstrated PDHB to be positively related to the intramuscular fat (IMF) content. However, the transcriptional regulation of PDHB remains unclear. In our present study, the cDNA of bovine PDHB was cloned and the genomic structure was analyzed. The phylogenetic tree showed bovine PDHB to be closely related to goat and sheep, and least related to chicken. Spatial expression pattern analysis revealed the products of bovine PDHB to be widely expressed with the highest level in the fat of testis. To understand the transcriptional regulation of bovine PDHB, 1899 base pairs (bp) of the 5’-regulatory region was cloned. Sequence analysis neither found consensus TATA-box nor CCAAT-box in the 5’-flanking region of bovine PDHB. However, a CpG island was predicted from nucleotides -284 to +117. Serial deletion constructs of the 5’-flanking region, evaluated in dual-luciferase reporter assay, revealed the core promoter to be located 490bp upstream from the transcription initiation site (+1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP) in combination with asite-directed mutation experiment indicated both myogenin (MYOG) and the CCAAT/enhancer-binding protein beta (C/EBPß) to be important transcription factors for bovine PDHB in skeletal muscle cells and adipocytes. Our results provide an important basis for further investigation of the bovine PDHB function and regulation in cattle.
Collapse
Affiliation(s)
- Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Yaran Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zhidong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Mingming Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- * E-mail:
| |
Collapse
|
11
|
Li A, Wu L, Wang X, Xin Y, Zan L. Tissue expression analysis, cloning and characterization of the 5'-regulatory region of the bovine FABP3 gene. Mol Biol Rep 2016; 43:991-8. [PMID: 27270359 DOI: 10.1007/s11033-016-4026-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/31/2016] [Indexed: 01/02/2023]
Abstract
Fatty acid binding protein 3 (FABP3) is a member of the FABP family which bind fatty acids and have an important role in fatty acid metabolism. A large number of studies have shown that the genetic polymorphisms of FABP3 are positively correlated with intramuscular fat (IMF) content in domestic animals, however, the function and transcriptional characteristics of FABP3 in cattle remain unclear. Real-time PCR analysis revealed that bovine FABP3 was highly expressed in cardiac tissue. The 5'-regulatory region of bovine FABP3 was cloned and its transcription initiation sites were identified. Sequence analysis showed that many transcriptional factor binding sites including TATA-box and CCAAT-box were present on the 5'-flanking region of bovine FABP3, and four CpG islands were found on nucleotides from -891 to +118. Seven serial deletion constructs of the 5'-regulatory region evaluated in dual-luciferase reporter assay indicated that its core promoter was 384 base pairs upstream from the transcription initiation site. The transcriptional factor binding sites RXRα, KLF15, CREB and Sp1 were conserved in the core promoter of cattle, sheep, pigs and dogs. These results provide further understanding of the function and regulation mechanism of bovine FABP3.
Collapse
Affiliation(s)
- Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lijuan Wu
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yaping Xin
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China. .,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
12
|
Li A, Zhao Z, Zhang Y, Fu C, Wang M, Zan L. Tissue expression analysis, cloning, and characterization of the 5′-regulatory region of the bovine fatty acid binding protein 4 gene1. J Anim Sci 2015; 93:5144-52. [DOI: 10.2527/jas.2015-9378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- A. Li
- College of Animal Science and Technology
| | - Z. Zhao
- College of Animal Science and Technology
| | - Y. Zhang
- College of Animal Science and Technology
| | - C. Fu
- College of Animal Science and Technology
| | - M. Wang
- College of Animal Science and Technology
| | - L. Zan
- College of Animal Science and Technology
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, People's Republic of China 712100
| |
Collapse
|