1
|
Melnikov OI, Mustakhimov II, Reshetnikov AS, Molchanov MV, Machulin AV, Khmelenina VN, Rozova ON. Interchangeability of class I and II fumarases in an obligate methanotroph Methylotuvimicrobium alcaliphilum 20Z. PLoS One 2023; 18:e0289976. [PMID: 37883386 PMCID: PMC10602362 DOI: 10.1371/journal.pone.0289976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/29/2023] [Indexed: 10/28/2023] Open
Abstract
The methanotrophic bacterium Methylotuvimicrobium alcaliphilum 20Z is an industrially promising candidate for bioconversion of methane into value-added chemicals. Here, we have study the metabolic consequences of the breaking in the tricarboxylic acid (TCA) cycle by fumarase knockout. Two fumarases belonging to non-homologous class I and II fumarases were obtained from the bacterium by heterologous expression in Escherichia coli. Class I fumarase (FumI) is a homodimeric enzyme catalyzing the reversible hydration of fumarate and mesaconate with activities of ~94 and ~81 U mg-1 protein, respectively. The enzyme exhibited high activity under aerobic conditions, which is a non-typical property for class I fumarases characterized to date. The calculation of kcat/S0.5 showed that the enzyme works effectively with either fumarate or mesaconate, but it is almost four times less specific to malate. Class II fumarase (FumC) has a tetrameric structure and equal activities of both fumarate hydration and malate dehydration (~45 U mg-1 protein). Using mutational analysis, it was shown that both forms of the enzyme are functionally interchangeable. The triple mutant strain 20Z-3E (ΔfumIΔfumCΔmae) deficient in the genes encoding the both fumarases and the malic enzyme accumulated 2.6 and 1.1 mmol g-1 DCW fumarate in the medium when growing on methane and methanol, respectively. Our data suggest the redundancy of the metabolic node in the TCA cycle making methanotroph attractive targets for modification, including generation of strains producing the valuable metabolites.
Collapse
Affiliation(s)
- Oleg I. Melnikov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Ildar I. Mustakhimov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Alexander S. Reshetnikov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Maxim V. Molchanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Andrey V. Machulin
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Valentina N. Khmelenina
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Olga N. Rozova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
2
|
Hou C, Tian L, Lian G, Fan LH, Li ZJ. Conversion of acetate and glyoxylate to fumarate by a cell-free synthetic enzymatic biosystem. Synth Syst Biotechnol 2023; 8:235-241. [PMID: 36970069 PMCID: PMC10033897 DOI: 10.1016/j.synbio.2023.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Fumarate is a value-added chemical that is widely used in food, medicine, material, and agriculture industries. With the rising attention to the demand for fumarate and sustainable development, many novel alternative ways that can replace the traditional petrochemical routes emerged. The in vitro cell-free multi-enzyme catalysis is an effective method to produce high value chemicals. In this study, a multi-enzyme catalytic pathway comprising three enzymes for fumarate production from low-cost substrates acetate and glyoxylate was designed. The acetyl-CoA synthase, malate synthase, and fumarase from Escherichia coli were selected and the coenzyme A achieved recyclable. The enzymatic properties and optimization of reaction system were investigated, reaching a fumarate yield of 0.34 mM with a conversion rate of 34% after 20 h of reaction. We proposed and realized the conversion of acetate and glyoxylate to fumarate in vitro using a cell-free multi-enzyme catalytic system, thus providing an alternative approach for the production of fumarate.
Collapse
|
3
|
Enzymatic Preparation of l-Malate in a Reaction System with Product Separation and Enzyme Recycling. Catalysts 2022. [DOI: 10.3390/catal12060587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reaction coupling separation systems using calcium fumarate as a substrate can break the reaction equilibrium and promote the production of l-malate. However, the low reusability and stability of fumarase limit its further application. In this study, partially purified fumarase of Thermus thermophilus (87.0 U mg−1) was immobilized within konjac-κ-carrageenan beads. An amalgamation of konjac and carrageenan gum (2%) was used to form the beads, and polyethylene polyamine (0.2%) and glutaraldehyde (0.1%) were used as the cross-linking agents. The pH and temperature profiles of free and immobilized fumarases were remarkably similar. The diffusion limit of immobilized fumarase caused a decline in the maximal velocity (Vmax), whereas the kinetic constant (Km) value increased. Optimization of the parameters for biotransformation by immobilized fumarase showed that 88.3% conversion of 200 mM calcium fumarate could be achieved at 55 °C within 8 h. The beads were stored for 30 days at 4 °C with minimal loss in activity and were reusable for up to 20 cycles with 78.1% relative activity. By recycling the reaction supernatant, a total amount of 3.98 M calcium fumarate was obtained with a conversion of 99.5%, which is the highest value ever reported.
Collapse
|
4
|
Ito S, Iwazumi K, Sukigara H, Osanai T. Fumarase From Cyanidioschyzon merolae Stably Shows High Catalytic Activity for Fumarate Hydration Under High Temperature Conditions. Front Microbiol 2020; 11:2190. [PMID: 33042040 PMCID: PMC7525151 DOI: 10.3389/fmicb.2020.560894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
Fumarases (Fums) catalyze the reversible reaction converting fumarate to l-malate. There are two kinds of Fums: Class І and ІІ. Thermostable Class ІІ Fums, from mesophilic microorganisms, are utilized for industrial l-malate production. However, the low thermostability of these Fums is a limitation in industrial l-malate production. Therefore, an alternative Class ІІ Fum that shows high activity and thermostability is required to overcome this drawback. Thermophilic microalgae and cyanobacteria can use carbon dioxide as a carbon source and are easy to cultivate. Among them, Cyanidioschyzon merolae and Thermosynechococcus elongatus are model organisms to study cell biology and structural biology, respectively. We biochemically analyzed Class ІІ Fums from C. merolae (CmFUM) and T. elongatus (TeFum). Both CmFUM and TeFum preferentially catalyzed fumarate hydration. The catalytic activity of CmFUM for fumarate hydration in the optimum conditions (52°C and pH 7.5) is higher compared to those of Class ІІ Fums from other organisms and TeFum. Thermostability tests of CmFUM revealed that CmFUM showed higher thermostability than those of Class ІІ Fums from other microorganisms. The yield of l-malate obtained from fumarate hydration catalyzed by CmFUM was 75-81%. In summary, CmFum has suitable properties for efficient l-malate production.
Collapse
Affiliation(s)
- Shoki Ito
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kaori Iwazumi
- School of Agriculture, Meiji University, Kawasaki, Japan
| | | | - Takashi Osanai
- School of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|
5
|
Katayama N, Takeya M, Osanai T. Biochemical characterisation of fumarase C from a unicellular cyanobacterium demonstrating its substrate affinity, altered by an amino acid substitution. Sci Rep 2019; 9:10629. [PMID: 31337820 PMCID: PMC6650407 DOI: 10.1038/s41598-019-47025-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/09/2019] [Indexed: 01/14/2023] Open
Abstract
The tricarboxylic acid cycle produces NADH for oxidative phosphorylation and fumarase [EC 4.2.1.2] is a critical enzyme in this cycle, catalysing the reversible conversion of fumarate and L-malate. Fumarase is applied to industrial L-malate production as a biocatalyst. L-malate is used in a wide range of industries such as food and beverage, pharmacy chemistry. Although the biochemical properties of fumarases have been studied in many organisms, they have not been investigated in cyanobacteria. In this study, the optimum pH and temperature of Synechocystis 6803 fumarase C (SyFumC) were 7.5 and 30 °C, respectively. The Km of SyFumC for L-malate was higher than for fumarate. Furthermore, SyFumC activity was strongly inhibited by citrate and succinate, consistent with fumarases in other organisms. Substitution of alanine by glutamate at position 314 of SyFumC changed the kcat for fumarate and L-malate. In addition, the inhibitory effects of citrate and succinate on SyFumC activity were alleviated. Phylogenetic analysis revealed cyanobacterial fumarase clades divided in non-nitrogen-fixing cyanobacteria and nitrogen-fixing cyanobacteria. SyFumC was thus biochemically characterised, including identification of an amino acid residue important for substrate affinity and enzymatic activity.
Collapse
Affiliation(s)
- Noriaki Katayama
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Masahiro Takeya
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
6
|
Lin L, Wang Y, Wu M, Zhu L, Yang L, Lin J. Enhancing the thermostability of fumarase C from Corynebacterium glutamicum via molecular modification. Enzyme Microb Technol 2018; 115:45-51. [PMID: 29859602 DOI: 10.1016/j.enzmictec.2018.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/21/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023]
Abstract
Fumarases have been successfully applied in industry for the production of l-malate. However, the industrialization of fumarases is limited by their low thermostability. In this study, the thermostability of fumarase C from Corynebacterium glutamicum was enhanced through directed evolution, simulated mutagenesis, site-directed mutagenesis and saturated mutagenesis. Mutant 2G (A411V) was initially constructed through directed evolution. Its half-life at 50 °C (t1/2, 50°C) increased from 1 min to 2.2 min, and the T5015 (temperature at which the activity of enzyme decreased by 50% in 15 min) increased from 44.8 °C to 47.2 °C. Besides, several different mutants were obtained by site-directed mutation. Among them, mutant 3G (A227V) showed significant improvement in thermostability with a 3.3-fold improvement of t1/2, 50°C and a 3.6 °C increase in T5015 compared to the wild-type enzyme. Then, 2/3G (A227V, A411V) was obtained by combining the mutant 2G with the mutant 3G, for which the t1/2, 50°C and T5015 increased to more than 768 min and 52.4 °C, respectively. Finally, site-saturated mutagenesis was employed on amino acid residues 175-Glu, 228-Gly, 297-Gly, 320-Lys and 464-Glu to maximize the thermostability of mutant 2/3G. The most thermostable mutant 175G with amino acid substitutions (A227V, A411V, E175K) was isolated. Its t1/2,50°C increased to more than 2700 min while that of wild-type enzyme was only 1 min and T5015 was 9.8 °C higher than the wild-type enzyme. The thermostable mutated enzymes generated without affecting the activity in this study would be an attractive candidate for industrial applications.
Collapse
Affiliation(s)
- Ling Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ying Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Li Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
7
|
Biological production of L-malate: recent advances and future prospects. World J Microbiol Biotechnol 2017; 34:6. [PMID: 29214355 DOI: 10.1007/s11274-017-2349-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
As intermediates in the TCA cycle, L-malate and its derivatives have been widely applied in the food, pharmaceutical, agriculture, and bio-based material industries. In recent years, biological routes have been regarded as very promising approaches as cost-effective ways to L-malate production from low-priced raw materials. In this mini-review, we provide a comprehensive overview of current developments of L-malate production using both biocatalysis and microbial fermentation. Biocatalysis is enzymatic transformation of fumarate to L-malate, here, the source of enzymes, catalytic conditions, and enzymatic molecular modification may be concluded. For microbial fermentation, the types of microorganisms, genetic characteristics, biosynthetic pathways, metabolic engineering strategies, fermentation substrates, and optimization of cultivation conditions have been discussed and compared. Furthermore, the combination of enzyme and metabolic engineering has also been summarized. In future, we also expect that novel biological approaches using industrially relevant strains and renewable raw materials can overcome the technical challenges involved in cost-efficient L-malate production.
Collapse
|
8
|
Liu J, Li J, Shin HD, Liu L, Du G, Chen J. Protein and metabolic engineering for the production of organic acids. BIORESOURCE TECHNOLOGY 2017; 239:412-421. [PMID: 28538198 DOI: 10.1016/j.biortech.2017.04.052] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future.
Collapse
Affiliation(s)
- Jingjing Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|