1
|
Ma M, Ling M, Huang Q, Xu Y, Yang X, Kyei B, Wang Q, Tang X, Shen Z, Zhang Y, Zhao G. Functional characterization of Nosema bombycis (microsporidia) trehalase 3. Parasitol Res 2023; 123:59. [PMID: 38112902 DOI: 10.1007/s00436-023-08082-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Nosema bombycis, an obligate intracellular parasite, is a single-celled eukaryote known to infect various tissues of silkworms, leading to the manifestation of pebrine. Trehalase, a glycosidase responsible for catalyzing the hydrolysis of trehalose into two glucose molecules, assumes a crucial role in thermal stress tolerance, dehydration, desiccation stress, and asexual development. Despite its recognized importance in these processes, the specific role of trehalase in N. bombycis remains uncertain. This investigation focused on exploring the functions of trehalase 3 in N. bombycis (NbTre3). Immunofluorescence analysis of mature (dormant) spores indicated that NbTre3 primarily localizes to the spore membrane or spore wall, suggesting a potential involvement in spore germination. Reverse transcription-quantitative polymerase chain reaction results indicated that the transcriptional level of NbTre3 peaked at 6 h post N. bombycis infection, potentially contributing to energy storage for proliferation. Throughout the life cycle of N. bombycis within the host cell, NbTre3 was detected in sporoplasm during the proliferative stage rather than the sporulation stage. RNA interference experiments revealed a substantial decrease in the relative transcriptional level of NbTre3, accompanied by a certain reduction in the relative transcriptional level of Nb16S rRNA. These outcomes suggest that NbTre3 may play a role in the proliferation of N. bombycis. The application of the His pull-down technique identified 28 proteins interacting with NbTre3, predominantly originating from the host silkworm. This finding implies that NbTre3 may participate in the metabolism of the host cell, potentially utilizing the host cell's energy resources.
Collapse
Affiliation(s)
- Mingzhen Ma
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Min Ling
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Qilong Huang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Yijie Xu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Xu Yang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Bismark Kyei
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Qiang Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
- The Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang, Jiangsu Province, China
| | - Xudong Tang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
- The Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang, Jiangsu Province, China
| | - Zhongyuan Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
- The Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang, Jiangsu Province, China
| | - Yiling Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China.
- The Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang, Jiangsu Province, China.
| | - Guodong Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
- The Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
2
|
Zhang T, Gu Y, Liu X, Yuan R, Zhou Y, Dai Y, Fang P, Feng Y, Cao G, Chen H, Xue R, Hu X, Gong C. Incidence of Carassius auratus Gibelio Gill Hemorrhagic Disease Caused by CyHV-2 Infection Can Be Reduced by Vaccination with Polyhedra Incorporating Antigens. Vaccines (Basel) 2021; 9:vaccines9040397. [PMID: 33923836 PMCID: PMC8072653 DOI: 10.3390/vaccines9040397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023] Open
Abstract
Encapsulation of antigens within protein microcrystals (polyhedra) is a promising approach for the stable delivery of vaccines. In this study, a vaccine was encapsulated into polyhedra against cyprinid herpesvirus II (CyHV-2). CyHV-2 typically infects gibel carp, Carassius auratus gibelio, causing gill hemorrhagic disease. The vaccine was constructed using a codon-optimized sequence, D4ORF, comprising the ORF72 (region 1–186 nt), ORF66 (region 993–1197 nt), ORF81 (region 603–783 nt), and ORF82 (region 85–186 nt) genes of CyHV-2. The H1-D4ORF and D4ORF-VP3 sequences were, respectively, obtained by fusing the H1-helix sequence (region 1–90 nt) ofBombyx mori cypovirus(BmCPV) polyhedrin to the 5′ terminal end of D4ORF and by fusing a partial sequence (1–279 nt) of the BmCPV VP3 gene to the 3′ terminal end of D4ORF. Furthermore, BmNPV-H1-D4ORF-polh and BmNPV-D4ORF-VP3-polh recombinant B. mori nucleopolyhedroviruses (BmNPVs), belonging to the family Baculoviridae, and co-expressing BmCPV polyhedrin and H1-D4ORF or D4ORF-VP3, were constructed. H1-D4ORF and D4ORF-VP3 fusion proteins were confirmed to be encapsulated into recombinant cytoplasmic polyhedra by Western blotting. Degradation of vaccine proteins was assessed by SDS-PAGE, and the results showed that the encapsulated vaccine proteins in polyhedra could be protected from degradation. Furthermore, when gibel carp were vaccinated with the purified polyhedra from BmNPV-H1-D4ORF-polh and BmNPV-D4ORF-VP3-polh via injection, the antibody titers in the serum of the vaccinated fish reached 1:6400–1:12,800 at 3 weeks post-vaccination. Therelative percentage of survival of immunized gibel carp reached 64.71% and 58.82%, respectively, following challenge with CyHV-2. These results suggest that incorporating vaccine protein into BmCPV polyhedra may be a novel approach for developing aquaculture microencapsulated vaccines.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (T.Z.); (Y.G.); (Y.D.); (Y.F.); (G.C.); (R.X.)
| | - Yuchao Gu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (T.Z.); (Y.G.); (Y.D.); (Y.F.); (G.C.); (R.X.)
| | - Xiaohan Liu
- Jiangsu Center for Control and Prevention of Aquatic Animal Infectious Disease, Nanjing 210036, China; (X.L.); (R.Y.); (P.F.); (H.C.)
| | - Rui Yuan
- Jiangsu Center for Control and Prevention of Aquatic Animal Infectious Disease, Nanjing 210036, China; (X.L.); (R.Y.); (P.F.); (H.C.)
| | - Yang Zhou
- Dafeng District Aquaculture Technical Extension Station of Yancheng City, Yancheng 224100, China;
| | - Yaping Dai
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (T.Z.); (Y.G.); (Y.D.); (Y.F.); (G.C.); (R.X.)
| | - Ping Fang
- Jiangsu Center for Control and Prevention of Aquatic Animal Infectious Disease, Nanjing 210036, China; (X.L.); (R.Y.); (P.F.); (H.C.)
| | - Yongjie Feng
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (T.Z.); (Y.G.); (Y.D.); (Y.F.); (G.C.); (R.X.)
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (T.Z.); (Y.G.); (Y.D.); (Y.F.); (G.C.); (R.X.)
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| | - Hui Chen
- Jiangsu Center for Control and Prevention of Aquatic Animal Infectious Disease, Nanjing 210036, China; (X.L.); (R.Y.); (P.F.); (H.C.)
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (T.Z.); (Y.G.); (Y.D.); (Y.F.); (G.C.); (R.X.)
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (T.Z.); (Y.G.); (Y.D.); (Y.F.); (G.C.); (R.X.)
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
- Correspondence: (X.H.); (C.G.)
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (T.Z.); (Y.G.); (Y.D.); (Y.F.); (G.C.); (R.X.)
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
- Correspondence: (X.H.); (C.G.)
| |
Collapse
|
3
|
Zhao G, Zhang X, Cheng J, Huang X, Qian H, Li G, Xu A. Effect of Titanium Dioxide Nanoparticles on the Resistance of Silkworm to Cytoplasmic Polyhedrosis Virus in Bombyx mori. Biol Trace Elem Res 2020; 196:290-296. [PMID: 31933281 DOI: 10.1007/s12011-019-01901-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022]
Abstract
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a serious disease harmful to silk industry, which is one of the major sources of financial support for farmers in many developing countries. So far, there is still no good way to prevent or treat this disease. In this study, titanium dioxide nanoparticles (TiO2 NPs) were used to pretreat silkworm larvae, and good results were achieved in improving silkworm immunity and alleviating the damage of cytoplasmic polyhedrosis virus. The results showed that nano-titanium dioxide pretreatment could inhibit the proliferation of BmCPV in the midgut of silkworm, activate JAK/STAT and PI3K-AKT immune signaling pathways, and upregulate the expression of key immune genes, so as to improve the immunity of silkworm and enhance the resistance of silkworm to BmCPV.
Collapse
Affiliation(s)
- Guodong Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| | - Xiao Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Jialu Cheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Xin Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Heying Qian
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| | - Gang Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| | - Anying Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China.
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China.
- College of Biotechnology, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212018, People's Republic of China.
| |
Collapse
|
4
|
Zhang Y, Cao G, Zhu L, Chen F, Zar MS, Wang S, Hu X, Wei Y, Xue R, Gong C. Integrin beta and receptor for activated protein kinase C are involved in the cell entry of Bombyx mori cypovirus. Appl Microbiol Biotechnol 2017; 101:3703-3716. [PMID: 28175946 DOI: 10.1007/s00253-017-8158-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/22/2022]
Abstract
Receptor-mediated endocytosis using a β1 integrin-dependent internalization was considered as the primary mechanism for the initiation of mammalian reovirus infection. Bombyx mori cypovirus (BmCPV) is a member of Reoviridae family which mainly infects the midgut epithelium of silkworm; the cell entry of BmCPV is poorly explored. In this study, co-immunoprecipitation (Co-IP), virus overlay protein binding assay (VOPBA), and BmCPV-protein interaction on the polyvinylidene difluoride membrane (BmCPV-PI-PVDF) methods were employed to screen the interacting proteins of BmCPV, and several proteins including integrin beta and receptor for activated protein kinase C (RACK1) were identified as the candidate interacting proteins for establishing the infection of BmCPV. The infectivity of BmCPV was investigated in vivo and in vitro by RNA interference (RNAi) and antibody blocking methods, and the results showed that the infectivity of BmCPV was significantly reduced by either small interfering RNA-mediated silencing of integrin beta and RACK1 or antibody blocking of integrin beta and RACK1. The expression level of integrin beta or RACK1 is not the highest in the silkworm midgut which is a principal target tissue of BmCPV, suggesting that the molecules other than integrin beta or RACK1 might play a key role in determining the tissue tropism of BmCPV infection. The establishment of BmCPV infection depends on other factors, and these factors interacted with integrin beta and RACK1 to form receptor complex for the cell entry of BmCPV.
Collapse
Affiliation(s)
- Yiling Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- Suzhou Municipal Key Laboratory of Molecular Diagnostics and Therapeutics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Liyuan Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Fei Chen
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Mian Sahib Zar
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Simei Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- Department of Hematology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yuhong Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|