1
|
Yuan X, Zhang X, Lin Y, Xie H, Wang Z, Hu X, Hu S, Li L, Liu H, He H, Han C, Gan X, Liao L, Xia L, Hu J, Wang J. Proteome of granulosa cells lipid droplets reveals mechanisms regulating lipid metabolism at hierarchical and pre-hierarchical follicle in goose. Front Vet Sci 2025; 12:1544718. [PMID: 40230795 PMCID: PMC11995638 DOI: 10.3389/fvets.2025.1544718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Avian hierarchical follicles are formed by selection and dominance of pre-hierarchical follicles, and lipid metabolism plays a pivotal role in this process. The amount of lipid in goose follicular granulosa cells increases with the increase of culture time, and the neutral lipid in the cells is stored in the form of lipid droplets (LDs). LD-associated proteins (LDAPs) collaborate with LDs to regulate intracellular lipid homeostasis, which subsequently influences avian follicle development. The mechanism by which LDAPs regulate lipid metabolism in goose granulosa cells at different developmental stages is unclear. Therefore, using BODIPY staining, we found that at five time points during in vitro culture, the LD content in hierarchical granulosa cells was significantly higher than that in pre-hierarchical granulosa cells in this study (p < 0.001). Next, we identified LDAPs in both hierarchical and pre-hierarchical granulosa cells, and screened out 1,180, 922, 907, 663, and 1,313 differentially expressed proteins (DEPs) at the respective time points. Subsequently, by performing Clusters of Orthologous Groups (COGs) classification on the DEPs, we identified a large number of proteins related to lipid transport and metabolism. Following this, the potential functions of these DEPs were investigated through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis. Finally, the important pathway of fatty acid degradation and the key protein ACSL3 were screened out using Short Time-series Expression Miner (STEM) and Protein-Protein Interaction (PPI) analysis methods. It is hypothesized that ACSL3 may potentially modulate lipid metabolism through the fatty acid degradation pathway, thereby contributing to the difference in lipid content between hierarchical and pre-hierarchical granulosa cells. These findings will provide a theoretical foundation for further studies on the role of LDs and LDAPs in avian follicle development.
Collapse
Affiliation(s)
- Xin Yuan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xi Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yueyue Lin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hengli Xie
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhujun Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinyue Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shenqiang Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hehe Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chunchun Han
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiang Gan
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lu Xia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiwei Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiwen Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Jiao XL, Jing JJ, Qiao LY, Liu JH, Li LA, Zhang J, Jia XL, Liu WZ. Ontogenetic Expression of Lpin2 and Lpin3 Genes and Their Associations with Traits in Two Breeds of Chinese Fat-tailed Sheep. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:333-42. [PMID: 26950863 PMCID: PMC4811783 DOI: 10.5713/ajas.15.0467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/17/2015] [Accepted: 09/10/2015] [Indexed: 12/14/2022]
Abstract
Lipins play dual function in lipid metabolism by serving as phosphatidate phosphatase and transcriptional co-regulators of gene expression. Mammalian lipin proteins consist of lipin1, lipin2, and lipin3 and are encoded by their respective genes Lpin1, Lpin2, and Lpin3. To date, most studies are concerned with Lpin1, only a few have addressed Lpin2 and Lpin3. Ontogenetic expression of Lpin2 and Lpin3 and their associations with traits would help to explore their molecular and physiological functions in sheep. In this study, 48 animals with an equal number of males and females each for both breeds of fat-tailed sheep such as Guangling Large Tailed (GLT) and Small Tailed Han (STH) were chosen to evaluate the ontogenetic expression of Lpin2 and Lpin3 from eight different tissues and months of age by quantitative real-time polymerase chain reaction (PCR). Associations between gene expression and slaughter and tail traits were also analyzed. The results showed that Lpin2 mRNA was highly expressed in perirenal and tail fats, and was also substantially expressed in liver, kidney, reproductive organs (testis and ovary), with the lowest levels in small intestine and femoral biceps. Lpin3 mRNA was prominently expressed in liver and small intestine, and was also expressed at high levels in kidney, perirenal and tail fats as well as reproductive organs (testis and ovary), with the lowest level in femoral biceps. Global expression of Lpin2 and Lpin3 in GLT both were significantly higher than those in STH. Spatiotemporal expression showed that the highest levels of Lpin2 expression occurred at 10 months of age in two breeds of sheep, with the lowest expression at 2 months of age in STH and at 8 months of age in GLT. The greatest levels of Lpin3 expression occurred at 4 months of age in STH and at 10 months of age in GLT, with the lowest expression at 12 months of age in STH and at 8 months of age in GLT. Breed and age significantly influenced the tissue expression patterns of Lpin2 and Lpin3, respectively, and sex significantly influenced the spatiotemporal expression patterns of Lpin3. Meanwhile, Lpin2 and Lpin3 mRNA expression both showed significant correlations with slaughter and tail traits, and the associations appear to be related with the ontogenetic expression as well as the potential functions of lipin2 and lipin3 in sheep.
Collapse
Affiliation(s)
- Xiao-Li Jiao
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030-801, China ; College of Animal Science and Veterinary medicine, Tianjin Agricultural University, Tianjin 300-384, China
| | - Jiong-Jie Jing
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030-801, China
| | - Li-Ying Qiao
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030-801, China
| | - Jian-Hua Liu
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030-801, China
| | - Liu-An Li
- College of Animal Science and Veterinary medicine, Tianjin Agricultural University, Tianjin 300-384, China
| | - Jing Zhang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030-801, China
| | - Xia-Li Jia
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030-801, China
| | - Wen-Zhong Liu
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030-801, China
| |
Collapse
|
3
|
Huang Y, Zhang C, Zhang W, Zhang P, Kang X, Chen W. Variation in the chicken LPIN2 gene and association with performance traits. Br Poult Sci 2015; 56:175-83. [PMID: 25668704 DOI: 10.1080/00071668.2015.1008994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The objective of the study was to investigate the distribution of LPIN2 variants and haplotypes among breeds and perform an association analysis of the variants and haplotypes with the broiler traits in chickens. Six breeds were used to study the variation and distribution of chicken LPIN2, and an F2 resource population was used to measure growth traits, carcass traits, meat quality traits and serum biochemistry parameters. A c.-599G>A variant was located in the promoter region of LPIN2 and c.444G>A and c.1730A>T (E577D) coding variant mutations were detected. Linkage disequilibrium tests showed that these three variants were under moderate linkage disequilibrium in the 6 breeds and 7 haplotypes were constructed. The distribution of variation/haplotypes presented clear differences among breeds. Association analysis showed that c.-599G>A was associated with leg muscle weight, jejunum length, ileum length, leg muscle fibre density and leg muscle fibre diameter; c.444G>A was associated with spleen weight, ileum length, body weight at hatch and metatarsus length at 8 weeks; c.1730T>A had significant effects on chicken liver weight, heart weight, body weight at 10 weeks, serum albumin and glucose. Diplotypes were significantly associated with body weight at hatch, heart weight, pancreas weight, duodenum length, leg muscle fibre density and lactate dehydrogenase.
Collapse
Affiliation(s)
- Y Huang
- a College of Livestock Husbandry and Veterinary Engineering , Henan Agricultural University , Zhengzhou , Henan , P. R. China
| | | | | | | | | | | |
Collapse
|