1
|
Cheng JH, Li J, Sun DW. Effects of dielectric barrier discharge cold plasma on structure, surface hydrophobicity and allergenic properties of shrimp tropomyosin. Food Chem 2023; 409:135316. [PMID: 36621166 DOI: 10.1016/j.foodchem.2022.135316] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Effects of dielectric barrier discharge (DBD) cold plasma (CP) on structure, surface hydrophobicity and allergenic properties of tropomyosin (TM) in shrimp were investigated in this study. Results showed that the molecular weight of TM increased and the protein concentration decreased with CP treatment time increased. The content of free amino acids was increased by 74.7 % and the distribution of aromatic amino acids was altered. The content of α-helix was decreased by 69 % and the surface hydrophobicity increased by 57.8 % after 20 min treatment. Allergenicity analysis showed that the IgE binding capacity decreased by 96 % after 20 min treatment, and the degranulation indexes of KU812 cells like the β-HEX release rate, the intracellular calcium ion intensity, the release of histamine and inflammatory cytokines (IL-4, TNF-α) were decreased by 32.5 %, 31.0 %, 37.3 %, 51.7 %, and 70.2 %, respectively. The current study confirmed that DBD CP could reduce the TM allergenicity through structural changes.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Effect of pressure cooking alone and in combination with other treatments on shrimp allergic protein, tropomyosin. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1193-1201. [PMID: 35153330 PMCID: PMC8814115 DOI: 10.1007/s13197-021-05124-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Shrimp allergen, tropomyosin is a highly heat stable allergen a common causative of shrimp allergy in sensitive individuals. Effect of house hold pressure cooking on immunogenicity of shrimp allergen, topomyosin from Metapenaeus dobsoni was investigated in both shrimp extract and peeled shrimp by extending the time of pressure cooking to 5, 10 and 20 min. Soaked shrimps in salt, baking soda, papain and acetic acid along with pressure cooking was also investigated. In the case of extracts, IgE activity was significantly (p < 0.05) decreased and the tropomyosin band was absent in the immunoblott using pooled sera of shrimp sensitive individuals. While in the case of whole peeled shrimp, IgE activity was significantly (p < 0.05) increased and the tropomyosin band was retained in the immunoblott analysis which indicates the retention of allerginicity in the peeled shrimp. Although pressure cooked shrimp after soaking in acetic acid didn't show significant (p > 0.05) difference to that of without soaking, the tropomyosin band was observed to be very faint or absent in SDS PAGE and immunoblott analysis which indicated the effective reduction in allegenicity of whole peeled shrimp.
Collapse
|
3
|
Cheng JH, Wang H, Sun DW. An overview of tropomyosin as an important seafood allergen: Structure, cross-reactivity, epitopes, allergenicity, and processing modifications. Compr Rev Food Sci Food Saf 2021; 21:127-147. [PMID: 34954871 DOI: 10.1111/1541-4337.12889] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/19/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
Tropomyosin (TM) is a major allergen in crustaceans, which often causes allergy and is fatal to some consumers. Currently, the most effective treatment is to avoid ingesting TM, although most adverse events occur in accidental ingestion. In this review, the molecular characterization, epitopes, cross-reactivity, and pathogenesis of TM are introduced and elucidated. Modification of TM by traditional processing methods such as heat treatment and enzymatic hydrolysis, and innovative processing technologies including high-pressure treatment, cold plasma (CP), ultrasound, pulsed electric field (PEF), pulsed ultraviolet, microwave and irradiation are discussed in detail. Particularly, enzymolysis, PEF, and CP technologies show great potential for modifying TM and more studies are needed to verify their effectiveness for the seafood industry. Possible mechanisms and the advantages/disadvantages of these technologies for the mitigation of TM allergenicity are also highlighted. Further work should be conducted to investigate the allergenicity caused by protein segments such as epitopes, examine the interaction sites between the allergen and the processing techniques and reveal the reduction mechanism of allergenicity.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Huifen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin, Belfield, Ireland
| |
Collapse
|
4
|
Zhang P, Gao J, Che H, Xue W, Yang D. Molecular Basis of IgE-Mediated Shrimp Allergy and Heat Desensitization. Nutrients 2021; 13:3397. [PMID: 34684397 PMCID: PMC8540294 DOI: 10.3390/nu13103397] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Crustacean allergy, especially to shrimp, is the most predominant cause of seafood allergy. However, due to the high flexibility of immunoglobulin E (IgE), its three-dimensional structure remains unsolved, and the molecular mechanism of shrimp allergen recognition is unknown. Here a chimeric IgE was built in silico, and its variable region in the light chain was replaced with sequences derived from shrimp tropomyosin (TM)-allergic patients. A variety of allergenic peptides from the Chinese shrimp TM were built, treated with heating, and subjected to IgE binding in silico. Amino acid analysis shows that the amino acid residue conservation in shrimp TM contributes to eliciting an IgE-mediated immune response. In the shrimp-allergic IgE, Glu98 in the light chain and other critical residues that recognize allergens from shrimp are implicated in the molecular basis of IgE-mediated shrimp allergy. Heat treatment could alter the conformations of TM allergenic peptides, impact their intramolecular hydrogen bonding, and subsequently decrease the binding between these peptides and IgE. We found Glu98 as the characteristic amino acid residue in the light chain of IgE to recognize general shrimp-allergic sequences, and heat-induced conformational change generally desensitizes shrimp allergens.
Collapse
Affiliation(s)
- PeiAo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.Z.); (J.G.); (H.C.); (W.X.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jihui Gao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.Z.); (J.G.); (H.C.); (W.X.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huilian Che
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.Z.); (J.G.); (H.C.); (W.X.)
| | - Wentong Xue
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.Z.); (J.G.); (H.C.); (W.X.)
| | - Dong Yang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.Z.); (J.G.); (H.C.); (W.X.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
5
|
Molecular and allergenic characterization of recombinant tropomyosin from mud crab Scylla olivacea. Mol Biol Rep 2021; 48:6709-6718. [PMID: 34427887 DOI: 10.1007/s11033-021-06661-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Tropomyosin is a major allergen in crustaceans, including mud crab species, but its molecular and allergenic properties in Scylla olivacea are not well known. Thus, this study aimed to produce the recombinant tropomyosin protein from S. olivacea and subsequently investigate its IgE reactivity. METHODS AND RESULTS The tropomyosin gene was cloned and expressed in the Escherichia coli system, followed by SDS-PAGE and immunoblotting test to identify the allergenic potential of the recombinant protein. The 855-base pair of tropomyosin gene produced was found to be 99.18% homologous to Scylla serrata. Its 284 amino acids matched the tropomyosin of crustaceans, arachnids, insects, and Klebsiella pneumoniae, ranging from 79.03 to 95.77%. The tropomyosin contained 89.44% alpha-helix folding with a tertiary structure of two-chain alpha-helical coiled-coil structures comprising a homodimer heptad chain. IPTG-induced histidine tagged-recombinant tropomyosin was purified at the size of 42 kDa and confirmed as tropomyosin using anti-tropomyosin monoclonal antibodies. The IgE binding of recombinant tropomyosin protein was reactive in 90.9% (20/22) of the sera from crab-allergic patients. CONCLUSIONS This study has successfully produced an allergenic recombinant tropomyosin from S. olivacea. This recombinant tropomyosin may be used as a specific allergen for the diagnosis of allergy.
Collapse
|
6
|
Abstract
Respiratory allergy including bronchial asthma and food allergy have gained epidemic character in the last decades in industrialized countries. Much has been learned with respect to the pathophysiology of allergic disease and this has facilitated specific therapies. Allergy is a chronic disease, and being so prevalent claims to search for evolutionary causes of the general susceptibility of humans as a species to react to environmental antigens in a Th2 type immune reaction with IgE production. In an evolutionary analysis of Allergy, necessary questions addressed in this review are "Why does IgE exist or why did IgE evolve?" as well as from the point of view of the mismatch hypothesis, "Why is there an Allergy epidemic?" Recent studies on the possible biological and protective role of IgE against parasites, arthropods, venoms or toxins are challenging the widely accepted definition of allergens as generally innocuous antigens. Combining the immunologic danger model and the toxin hypothesis for allergies, the allergic response could have evolved with an adaptive value and allergens could be proxies for other putative noxious agents. The last decades yielded with vast molecular data of allergens. With available bioinformatics tools, we therefore also describe that evolutionary theory could be applied to prevent allergy, estimate cross-reactivity, to design allergen-specific immunotherapy and to assess the risks of novel foods.
Collapse
|
7
|
Vargas AM, Mahajan A, Tille KS, Wilson BS, Mattison CP. Cross-reaction of recombinant termite (Coptotermes formosanus) tropomyosin with IgE from cockroach and shrimp allergic individuals. Ann Allergy Asthma Immunol 2018; 120:335-337. [PMID: 29508724 DOI: 10.1016/j.anai.2017.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 11/17/2022]
Affiliation(s)
- Aurora M Vargas
- Initiative for Maximizing Student Development, Louisiana State University, Baton Rouge, Louisiana
| | - Avanika Mahajan
- University of New Mexico, School of Medicine, Albuquerque, New Mexico
| | - Katherine S Tille
- Malcolm Grow Medical Clinics and Surgical Center, Joint Base Andrews, Maryland
| | - Bridget S Wilson
- University of New Mexico, School of Medicine, Albuquerque, New Mexico
| | - Christopher P Mattison
- US Department of Agriculture-Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana.
| |
Collapse
|
8
|
Fu L, Song J, Wang C, Fu S, Wang Y. Bifidobacterium infantis Potentially Alleviates Shrimp Tropomyosin-Induced Allergy by Tolerogenic Dendritic Cell-Dependent Induction of Regulatory T Cells and Alterations in Gut Microbiota. Front Immunol 2017; 8:1536. [PMID: 29176981 PMCID: PMC5686061 DOI: 10.3389/fimmu.2017.01536] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/27/2017] [Indexed: 12/17/2022] Open
Abstract
Shellfish is one of the major allergen sources worldwide, and tropomyosin (Tm) is the predominant allergic protein in shellfish. Probiotics has been appreciated for its beneficial effects on the host, including anti-allergic and anti-inflammatory effects, although the underlying mechanisms were not fully understood. In this study, oral administration of probiotic strain Bifidobacterium infantis 14.518 (Binf) effectively suppressed Tm-induced allergic response in a mouse model by both preventive and therapeutic strategies. Further results showed that Binf stimulated dendritic cells (DCs) maturation and CD103+ tolerogenic DCs accumulation in gut-associated lymphoid tissue, which subsequently induced regulatory T cells differentiation for suppressing Th2-biased response. We also found that Binf regulates the alterations of gut microbiota composition. Specifically, the increase of Dorea and decrease of Ralstonia is highly correlated with Th2/Treg ratio and may contribute to alleviating Tm-induced allergic responses. Our findings provide molecular insight into the application of Binf in alleviating food allergy and even gut immune homeostasis.
Collapse
Affiliation(s)
- Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.,Laboratory of Mucosal Immunology and Food Research, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jinyu Song
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chong Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.,Laboratory of Mucosal Immunology and Food Research, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Shujie Fu
- Laboratory of Mucosal Immunology and Food Research, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.,Laboratory of Mucosal Immunology and Food Research, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
9
|
Allergenicity of vertebrate tropomyosins: Challenging an immunological dogma. Allergol Immunopathol (Madr) 2017; 45:297-304. [PMID: 27789064 DOI: 10.1016/j.aller.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/01/2016] [Indexed: 11/23/2022]
Abstract
With the exception of tilapia tropomyosin, other anecdotic reports of tropomyosin recognition of vertebrate origin are generally not accompanied by clinical significance and a dogmatic idea is generally accepted about the inexistence of allergenicity of vertebrate tropomyosins, based mainly on sequence similarity evaluations with human tropomyosins. Recently, a specific work-up of a tropomyosin sensitised patient with seafood allergy, demonstrated that the IgE-recognition of tropomyosin from different fish species can be clinically relevant. We hypothesise that some vertebrate tropomyosins could be relevant allergens. The hypothesis is based on the molecular evolution of the proteins and it was tested by in silico methods. Fish, which are primitive vertebrates, could have tropomyosins similar to those of invertebrates. If the hypothesis is confirmed, tropomyosin should be included in different allergy diagnosis tools to improve the medical protocols and management of patients with digestive or cutaneous symptoms after fish intake.
Collapse
|
10
|
Abstract
Shellfish are diverse, serve as main constituents of seafood, and are extensively consumed globally because of their nutritional values. Consequently, increase in reports of IgE-mediated seafood allergy is particularly food associated to shellfish. Seafood-associated shellfish consists of crustaceans (decapods, stomatopods, barnacles, and euphausiids) and molluskans (gastropods, bivalves, and cephalopods) and its products can start from mild local symptoms and lead to severe systemic anaphylactic reactions through ingestion, inhalation, or contact like most other food allergens. Globally, the most commonly causative shellfish are shrimps, crabs, lobsters, clams, oysters, and mussels. The prevalence of shellfish allergy is estimated to be 0.5-2.5% of the general population but higher in coastal Asian countries where shellfish constitute a large proportion of the diet. Diversity in allergens such as tropomyosin, arginine kinase, myosin light chain, and sarcoplasmic binding protein are from crustaceans whereas tropomyosin, paramyosin, troponin, actine, amylase, and hemoyanin are reported from molluskans shellfish. Tropomyosin is the major allergen and is responsible for cross-reactivity between shellfish and other invertebrates, within crustaceans, within molluskans, between crustaceans vs. molluskans as well as between shellfish and fish. Allergenicity diagnosis requires clinical history, in vivo skin prick testing, in vitro quantification of IgE, immunoCAP, and confirmation by oral challenge testing unless the reactions borne by it are life-threatening. This comprehensive review provides the update and new findings in the area of shellfish allergy including demographic, diversity of allergens, allergenicity, their cross-reactivity, and innovative molecular genetics approaches in diagnosing and managing this life-threatening as well as life-long disease.
Collapse
Affiliation(s)
- Samanta S Khora
- a Medical Biotechnology Lab, Department of Medical Biotechnology , School of Biosciences and Technology, VIT University , Vellore , India
| |
Collapse
|
11
|
López-Matas MA, de Larramendi CH, Moya R, Sánchez-Guerrero I, Ferrer A, Huertas AJ, Flores I, Navarro LA, García-Abujeta JL, Vicario S, Andreu C, Peña M, Carnés J. In vivo diagnosis with purified tropomyosin in mite and shellfish allergic patients. Ann Allergy Asthma Immunol 2016; 116:538-43. [PMID: 27132158 DOI: 10.1016/j.anai.2016.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/25/2016] [Accepted: 03/31/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Tropomyosin is the most studied shellfish allergen and has been involved in cross-reactivity among different invertebrates (crustacean, mollusks, mites, insects, and nematodes). OBJECTIVE To determine the relevance of tropomyosin in mite- and shellfish-sensitized patients using tropomyosin skin testing. METHODS Patients were divided into 3 groups: group M included mite allergic patients (ie, individuals with respiratory symptoms and a positive result on skin prick testing [SPT] to house dust mites), group S included shellfish allergic patients (ie, individuals who reported symptoms with shellfish), and group MS included mite- and shellfish allergic patients (ie, individuals who simultaneously fulfilled the inclusion criteria for groups M and S). Tropomyosin was purified from shrimp, characterized, and used in SPT for diagnosis in the patient population. RESULTS Eight hundred fifty patients were included in the study: 790 (92.9%) in group M, 21 (2.5%) in group S, and 39 (4.6%) in group MS. Tropomyosin was purified from shrimp with a purity higher than 95%. Forty-two individuals tested positive to tropomyosin: the prevalence was 2.7% in group M, 28.6% in group S, and 38.5% in patients of group MS. Twenty-one (50%) of the tropomyosin-positive individuals had symptoms with shellfish, and 3 (14.3%) reported anaphylaxis. CONCLUSION The prevalence of tropomyosin was low in mite-sensitized patients (2.7 %) and high in shellfish allergic patients (28.6%). The higher prevalence of tropomyosin was found in patients sensitized to both mite and shellfish (38.5%). The selection of tropomyosin-sensitized patients by SPT might help in the choice of appropriate treatments or management for these patients.
Collapse
Affiliation(s)
| | - Carlos H de Larramendi
- Allergy Section, Hospital Marina Baixa, Villajoyosa and Centro de Especialidades Foietes, Benidorm, Alicante, Spain
| | - Raquel Moya
- R&D Department, Laboratorios LETI S.L., Tres Cantos, Madrid, Spain
| | | | - Angel Ferrer
- Allergy Unit, Hospital General Universitario de Elche, Elche, Alicante, Spain
| | - Angel Julio Huertas
- Allergy Section, Complejo Hospitalario Universitario de Cartagena, Cartagena, Murcia, Spain
| | - Isabel Flores
- Allergy Unit, Hospital de la Vega Baja, Orihuela, Alicante, Spain
| | - Luis Angel Navarro
- Allergy Unit, Centro de Especialidades El Españoleto, Játiva, Valencia, Spain
| | - José Luis García-Abujeta
- Allergy Section, Hospital Marina Baixa, Villajoyosa and Centro de Especialidades Foietes, Benidorm, Alicante, Spain
| | - Sandra Vicario
- Allergy Section, Hospital Marina Baixa, Villajoyosa and Centro de Especialidades Foietes, Benidorm, Alicante, Spain
| | - Carmen Andreu
- Allergy Unit, Hospital de la Vega Baja, Orihuela, Alicante, Spain
| | - Maribel Peña
- Allergy Unit, Hospital de la Vega Baja, Orihuela, Alicante, Spain
| | - Jerónimo Carnés
- R&D Department, Laboratorios LETI S.L., Tres Cantos, Madrid, Spain.
| |
Collapse
|
12
|
López-Matas MA, Iraola V, Moya R, Vailes LD, Pomés A, Boquete M, Fernández-Caldas E, Arlian L, Chapman M, Carnés J. Cloning and characterization of tropomyosin from the mite Chortoglyphus arcuatus. Mol Immunol 2015; 68:634-40. [DOI: 10.1016/j.molimm.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/29/2015] [Accepted: 10/09/2015] [Indexed: 11/29/2022]
|
13
|
Egorova KS, Kondakova AN, Toukach PV. Carbohydrate Structure Database: tools for statistical analysis of bacterial, plant and fungal glycomes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav073. [PMID: 26337239 PMCID: PMC4559136 DOI: 10.1093/database/bav073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/01/2015] [Indexed: 12/02/2022]
Abstract
Carbohydrates are biological blocks participating in diverse and crucial processes both at cellular and organism levels. They protect individual cells, establish intracellular interactions, take part in the immune reaction and participate in many other processes. Glycosylation is considered as one of the most important modifications of proteins and other biologically active molecules. Still, the data on the enzymatic machinery involved in the carbohydrate synthesis and processing are scattered, and the advance on its study is hindered by the vast bulk of accumulated genetic information not supported by any experimental evidences for functions of proteins that are encoded by these genes. In this article, we present novel instruments for statistical analysis of glycomes in taxa. These tools may be helpful for investigating carbohydrate-related enzymatic activities in various groups of organisms and for comparison of their carbohydrate content. The instruments are developed on the Carbohydrate Structure Database (CSDB) platform and are available freely on the CSDB web-site at http://csdb.glycoscience.ru. Database URL: http://csdb.glycoscience.ru
Collapse
Affiliation(s)
- K S Egorova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninskiy prospect 47, 119991 Moscow, Russia
| | - A N Kondakova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninskiy prospect 47, 119991 Moscow, Russia
| | - Ph V Toukach
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninskiy prospect 47, 119991 Moscow, Russia
| |
Collapse
|
14
|
Popescu FD. Cross-reactivity between aeroallergens and food allergens. World J Methodol 2015; 5:31-50. [PMID: 26140270 PMCID: PMC4482820 DOI: 10.5662/wjm.v5.i2.31] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/25/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023] Open
Abstract
In patients with respiratory allergy, cross-reactivity between aeroallergens and foods may induce food allergy, symptoms ranging from oral allergy syndrome to severe anaphylaxis. Clinical entities due to IgE sensitization to cross-reactive aeroallergen and food allergen components are described for many sources of plant origin (pollen-food syndromes and associations, such as birch-apple, cypress-peach and celery-mugwort-spice syndromes, and mugwort-peach, mugwort-chamomile, mugwort-mustard, ragweed-melon-banana, goosefoot-melon associations), fungal origin (Alternaria-spinach syndrome), and invertebrate, mammalian or avian origin (mite-shrimp, cat-pork, and bird-egg syndromes). Clinical cases of allergic reactions to ingestion of food products containing pollen grains of specific plants, in patients with respiratory allergy to Asteraceae pollen, especially mugwort and ragweed, are also mentioned, for honey, royal jelly and bee polen dietary supplements, along with allergic reactions to foods contaminated with mites or fungi in patients with respiratory allergy to these aeroallergens. Medical history and diagnosis approach may be guided by the knowledge about the diverse cross-reacting allergens involved, and by the understanding of these clinical entities which may vary significantly or may be overlapping. The association between primary IgE sensitization with respiratory symptoms to inhaled allergens and food allergy due to cross-reactive allergen components is important to assess in allergy practice. The use of molecular-based diagnosis improves the understanding of clinically relevant IgE sensitization to cross-reactive allergen components from aeroallergen sources and foods.
Collapse
|