1
|
Chen Y, Jiang Y, Chen Y, Feng W, Liu G, Yu C, Lian B, Zhong F, Zhang J. Uncovering candidate genes responsive to salt stress in Salix matsudana (Koidz) by transcriptomic analysis. PLoS One 2020; 15:e0236129. [PMID: 32760076 PMCID: PMC7410171 DOI: 10.1371/journal.pone.0236129] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Salix matsudana, a member of Salicaceae, is an important ornamental tree in China. Because of its capability to tolerate high salt conditions, S. matsudana also plays an important ecological role when grown along Chinese coastal beaches, where the salinity content is high. Here, we aimed to elucidate the mechanism of higher salt tolerance in S. matsudana variety ‘9901’ by identifying the associated genes through RNA sequencing and comparing differential gene expression between the S. matsudana salt-tolerant and salt-sensitive samples treated with 150 mM NaCl. Transcriptomic comparison of the roots of the two samples revealed 2174 and 3159 genes responsive to salt stress in salt-sensitive and salt-tolerant sample, respectively. Real-time polymerase chain reaction analysis of 9 of the responsive genes revealed a strong, positive correlation with RNA sequencing data. The genes were enriched in several pathways, including carbon metabolism pathway, plant-pathogen interaction pathway, and plant hormone signal transduction pathway. Differentially expressed genes (DEGs) encoding transcription factors associated with abiotic stress responses and salt stress response network were identified; their expression levels differed between the two samples in response to salt stress. Hub genes were also revealed by weighted gene co-expression network (WGCNA) analysis. For functional analysis of the DEG encoding sedoheptulose-1,7-bisphosphatase (SBPase), the gene was overexpressed in transgenic Arabidopsis, resulting in increased photosynthetic rates, sucrose and starch accumulation, and enhanced salt tolerance. Further functional characterization of other hub DEGs will reveal the molecular mechanism of salt tolerance in S. matsudana and allow the application of S. matsudana in coastal afforestation.
Collapse
Affiliation(s)
- Yanhong Chen
- Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, China
| | - Yuna Jiang
- Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, China
| | - Yu Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wenxiang Feng
- Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, China
| | - Guoyuan Liu
- Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, China
| | - Chunmei Yu
- Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, China
| | - Bolin Lian
- Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, China
| | - Fei Zhong
- Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, China
| | - Jian Zhang
- Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, China
- * E-mail:
| |
Collapse
|
2
|
Jin Z, Xie L, Zhang T, Liu L, Black T, Jones KC, Zhang H, Wang X, Jin N, Zhang D. Interrogating cadmium and lead biosorption mechanisms by Simplicillium chinense via infrared spectroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114419. [PMID: 32220774 DOI: 10.1016/j.envpol.2020.114419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/29/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
Fungi-associated phytoremediation is an environmentally friendly and cost-efficient approach to remove potential toxic elements (PTEs) from contaminated soils. Many fungal strains have been reported to possess PTE-biosorption behaviour which benefits phytoremediation performance. Nevertheless, most studies are limited in rich or defined medium, far away from the real-world scenarios where nutrients are deficient. Understanding fungal PTE-biosorption performance and influential factors in soil environment can expand their application potential and is urgently needed. This study applied attenuated total reflection Fourier-transform infrared (ATR-FTIR) coupled with phenotypic microarrays to study the biospectral alterations of a fungal strain Simplicillium chinense QD10 and explore the mechanisms of Cd and Pb biosorption. Both Cd and Pb were efficiently adsorbed by S. chinense QD10 cultivated with 48 different carbon sources and the biosorption efficiency achieved >90%. As the first study using spectroscopic tools to analyse PTE-biosorption by fungal cells in a high-throughput manner, our results indicated that spectral biomarkers associated with phosphor-lipids and proteins (1745 cm-1, 1456 cm-1 and 1396 cm-1) were significantly correlated with Cd biosorption, suggesting the cell wall components of S. chinense QD10 as the primary interactive targets. In contrast, there was no any spectral biomarker associated with Pb biosorption. Addtionally, adsorption isotherms evidenced a Langmuir model for Cd biosorption but a Freundlich model for Pb biosorption. Accordingly, Pb and Cd biosorption by S. chinense QD10 followed discriminating mechanisms, specific adsorption on cell membrane for Cd and unspecific extracellular precipitation for Pb. This work lends new insights into the mechanisms of PTE-biosorption via IR spectrochemical tools, which provide more comprehensive clues for biosorption behaviour with a nondestructive and high-throughput manner solving the traditional technical barrier regarding the real-world scenarios.
Collapse
Affiliation(s)
- Zhongmin Jin
- College of Agriculture, Forestry and Life Science, Qiqihar University, Qiqihar, 161006, PR China; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Lin Xie
- College of Agriculture, Forestry and Life Science, Qiqihar University, Qiqihar, 161006, PR China
| | - Tuo Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, PR China
| | - Lijie Liu
- College of Agriculture, Forestry and Life Science, Qiqihar University, Qiqihar, 161006, PR China
| | - Tom Black
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Xinzi Wang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Naifu Jin
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
3
|
Huang X, Soolanayakanahally RY, Guy RD, Shunmugam ASK, Mansfield SD. Differences in growth and physiological and metabolic responses among Canadian native and hybrid willows (Salix spp.) under salinity stress. TREE PHYSIOLOGY 2020; 40:652-666. [PMID: 32083671 DOI: 10.1093/treephys/tpaa017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Globally, soil salinization is becoming increasingly prevalent, due to local hydrogeologic phenomena, climate change and anthropogenic activities. This has significantly curtailed current world food production and limits future production potential. In the prairie region of North America, sulfate salts, rather than sodium chloride, are often the predominant cause of soil degradation. In order to amend soil quality, revegetate salt-affected sites and recover economic loss associated with soil salinization, the establishment of short-rotation coppice plantations with willows (Salix spp.) has been suggested as a possible solution. To screen for the best candidates for such an application, 20 hybrid and 16 native willow genotypes were treated with three different salt conditions for 3 months. The treatments were designed to reflect the salt composition and concentrations on North American prairies. Under moderate salinity treatment (7 dS m-1), hybrid willows had better growth, as they established quickly while managing salt transport and mineral nutrition balance. However, native willows showed higher potential for long-term survival under severe salinity treatment (14 dS m-1), showing a lower sodium:potassium ratio in roots and better photosynthetic performance. Two native willow genotypes with high osmotic and salinity tolerance indices, specifically LAR-10 and MJW-9, are expected to show superior potential for remediating salt-affected sites. In addition, we observed significantly higher sulfate/sulfur concentrations in both leaf and root tissues in response to the severe salinity treatment, shedding light on the effect of sulfate salinity on sulfate uptake, and potentially sulfur metabolism in plants.
Collapse
Affiliation(s)
- Xinyi Huang
- Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | | | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Arun S K Shunmugam
- Department of Jobs, Precincts and Regions, Agriculture Victoria Research, 110 Natimuk Road, Horsham, VIC 3400, Australia
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
4
|
Liu M, He X, Feng T, Zhuo R, Qiu W, Han X, Qiao G, Zhang D. cDNA Library for Mining Functional Genes in Sedum alfredii Hance Related to Cadmium Tolerance and Characterization of the Roles of a Novel SaCTP2 Gene in Enhancing Cadmium Hyperaccumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10926-10940. [PMID: 31449747 DOI: 10.1021/acs.est.9b03237] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heavy metal contamination presents serious threats to living organisms. Functional genes related to cadmium (Cd) hypertolerance or hyperaccumulation must be explored to enhance phytoremediation. Sedum alfredii Hance is a Zn/Cd cohyperaccumulator exhibiting abundant genes associated with Cd hypertolerance. Here, we developed a method for screening genes related to Cd tolerance by expressing a cDNA-library for S. alfredii Hance. Yeast functional complementation validated 42 of 48 full-length genes involved in Cd tolerance, and the majority of them were strongly induced in roots and exhibited diverse expression profiles across tissues. Coexpression network analysis suggested that 15 hub genes were connected with genes involved in metabolic processes, response to stimuli, and metal transporter and antioxidant activity. The functions of a novel SaCTP2 gene were validated by heterologous expression in Arabidopsis, responsible for retarding chlorophyll content decrease, maintaining membrane integrity, promoting reactive oxygen species (ROS) scavenger activities, and reducing ROS levels. Our findings suggest a highly complex network of genes related to Cd hypertolerance in S. alfredii Hance, accomplished via the antioxidant system, defense genes induction, and the calcium signaling pathway. The proposed cDNA-library method is an effective approach for mining candidate genes associated with Cd hypertolerance to develop genetically engineered plants for use in phytoremediation.
Collapse
Affiliation(s)
- Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
- School of Basic Medical Sciences , Zhejiang Chinese Medical University , Hangzhou 310053 , People's Republic of China
| | - Xuelian He
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Tongyu Feng
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Dayi Zhang
- School of Environment , Tsinghua University , Beijing 100084 , People's Republic of China
| |
Collapse
|
5
|
Liu M, Qiu W, He X, Zheng L, Song X, Han X, Jiang J, Qiao G, Sang J, Liu M, Zhuo R. Functional Characterization of a Gene in Sedum alfredii Hance Resembling Rubber Elongation Factor Endowed with Functions Associated with Cadmium Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:965. [PMID: 27446189 PMCID: PMC4925709 DOI: 10.3389/fpls.2016.00965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/16/2016] [Indexed: 05/19/2023]
Abstract
Cadmium is a major toxic heavy-metal pollutant considering their bioaccumulation potential and persistence in the environment. The hyperaccumulating ecotype of Sedum alfredii Hance is a Zn/Cd co-hyperaccumulator inhabiting in a region of China with soils rich in Pb/Zn. Investigations into the underlying molecular regulatory mechanisms of Cd tolerance are of substantial interest. Here, library screening for genes related to cadmium tolerance identified a gene resembling the rubber elongation factor gene designated as SaREFl. The heterologous expression of SaREFl rescued the growth of a transformed Cd-sensitive strain (ycf1). Furthermore, SaREFl-expressing Arabidopsis plants were more tolerant to cadmium stress compared with wild type by measuring parameters of root length, fresh weight and physiological indexes. When under four different heavy metal treatments, we found that SaREFl responded most strongly to Cd and the root was the plant organ most sensitive to this heavy metal. Yeast two-hybrid screening of SaREFl as a bait led to the identification of five possible interacting targets in Sedum alfredii Hance. Among them, a gene annotated as prenylated Rab acceptor 1 (PRA1) domain protein was detected with a high frequency. Moreover, subcellular localization of SaREF1-GFP fusion protein revealed some patchy spots in cytosol suggesting potential association with organelles for its cellular functions. Our findings would further enrich the connotation of REF-like genes and provide theoretical assistance for the application in breeding heavy metal-tolerant plants.
Collapse
Affiliation(s)
- Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Wenming Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Xuelian He
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
- Biotechnology Research Center of China Three Gorges University, YichangChina
| | - Liu Zheng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
- Biotechnology Research Center of China Three Gorges University, YichangChina
| | - Xixi Song
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Jian Sang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| | - Mingqing Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Vocational Secondary Specialized School of Hedong District, LinyiChina
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, BeijingChina
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, HangzhouChina
| |
Collapse
|
6
|
Li J, Jia H, Han X, Zhang J, Sun P, Lu M, Hu J. Selection of Reliable Reference Genes for Gene Expression Analysis under Abiotic Stresses in the Desert Biomass Willow, Salix psammophila. FRONTIERS IN PLANT SCIENCE 2016; 7:1505. [PMID: 27761137 PMCID: PMC5050224 DOI: 10.3389/fpls.2016.01505] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/22/2016] [Indexed: 05/11/2023]
Abstract
Salix psammophila is a desert shrub willow that has extraordinary adaptation to abiotic stresses and plays an important role in maintaining local ecosystems. Moreover, S. psammophila is regarded as a promising biomass feedstock because of its high biomass yields and short rotation coppice cycle. However, few suitable reference genes (RGs) for quantitative real-time polymerase chain reaction (qRT-PCR) constrain the study on normalization of gene expression in S. psammophila until now. Here, we investigated the expression stabilities of 14 candidate RGs across tissue types and under four abiotic stress treatments, including heat, cold, salt, and drought treatments. After calculation of PCR efficiencies, three different software, NormFinder, geNorm, and BestKeeper were employed to analyze systematically the qRT-PCR data, and the outputs were merged by RankAggreg software. The optimal RGs selected for gene expression analysis were EF1α (Elongation factor-1 alpha) and OTU (OTU-like cysteine protease family protein) for different tissue types, UBC (Ubiquitin-conjugating enzyme E2) and LTA4H (Leukotriene A-4 hydrolase homolog) for heat treatment, HIS (Histone superfamily protein H3) and ARF2 (ADP-ribosylation factor 2) for cold treatment, OTU and ACT7 (Actin 7) for salt treatment, UBC and LTA4H for drought treatment. The expression of UBC, ARF2, and VHAC (V-type proton ATPase subunit C) varied the least across tissue types and under abiotic stresses. Furthermore, the relative genes expression profiles of one tissue-specific gene WOX1a (WUSCHEL-related homeobox 1a), and four stress-inducible genes, including Hsf-A2 (Heat shock transcription factors A2), CBF3 (C-repeat binding factor 3), HKT1 (High-Affinity K+ Transporter 1), and GST (Glutathione S-transferase), were conducted to confirm the validity of the RGs in this study. These results provided an important RGs application guideline for gene expression characterization in S. psammophila.
Collapse
Affiliation(s)
- Jianbo Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Pei Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China
- *Correspondence: Jianjun Hu,
| |
Collapse
|
7
|
Wang H, Wang K, Xiao G, Ma J, Wang B, Shen S, Fu X, Zou G, Zou B. Molecular Mechanisms for High Hydrostatic Pressure-Induced Wing Mutagenesis in Drosophila melanogaster. Sci Rep 2015; 5:14965. [PMID: 26446369 PMCID: PMC4597337 DOI: 10.1038/srep14965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/14/2015] [Indexed: 11/09/2022] Open
Abstract
Although High hydrostatic pressure (HHP) as an important physical and chemical tool has been increasingly applied to research of organism, the response mechanisms of organism to HHP have not been elucidated clearly thus far. To identify mutagenic mechanisms of HHP on organisms, here, we treated Drosophila melanogaster (D. melanogaster) eggs with HHP. Approximately 75% of the surviving flies showed significant morphological abnormalities from the egg to the adult stages compared with control flies (p < 0.05). Some eggs displayed abnormal chorionic appendages, some larvae were large and red, and some adult flies showed wing abnormalities. Abnormal wing phenotypes of D. melanogaster induced by HHP were used to investigate the mutagenic mechanisms of HHP on organism. Thus 285 differentially expressed genes associated with wing mutations were identified using Affymetrix Drosophila Genome Array 2.0 and verified with RT-PCR. We also compared wing development-related central genes in the mutant flies with control flies using DNA sequencing to show two point mutations in the vestigial (vg) gene. This study revealed the mutagenic mechanisms of HHP-induced mutagenesis in D. melanogaster and provided a new model for the study of evolution on organisms.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P. R. China.,College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P. R. China
| | - Guanjun Xiao
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P. R. China
| | - Junfeng Ma
- College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Bingying Wang
- College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Sile Shen
- College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Xueqi Fu
- College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Guangtian Zou
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P. R. China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|