1
|
Bu F, Zheng M, Li N, Yan X, Xin H, Li Y, Zhang F. Portulaca Oleracea L. Phenolic Amide Methyl (3,4,5-Trimethoxybenzoyl) Valylprolinate Attenuates Diethylhexyl Phthalate-Induced Human Umbilical Vein Endothelial Cells' Inflammation Through NLRP3 and NF-κB Pathways. J Med Food 2024; 27:971-980. [PMID: 39133117 DOI: 10.1089/jmf.2024.k.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
Twelve polyphenol derivatives were obtained in a protective activity-guided isolation from the Portulaca oleracea L. extract on a cell model of human umbilical vein endothelial cells (HUVECs) under diethylhexyl phthalate (DEHP) exposure. Among them, methyl (3,4,5-trimethoxybenzoyl) valylprolinate (PP-10) performed the most protective activity and inhibited DEHP exposure-induced HUVECs' apoptosis. PP-10 also inhibited the DEHP-induced inflammatory cytokines (TNF-α, IL-6, IL-1β, and IL-8) and adhesion molecule (ICAM-1 andVCAM-1) overexpression. Furthermore, DEHP-induced NLRP3 inflammasomes' and NF-κB signaling pathway activation was significantly inhibited after the PP-10 treatments. Of note, the current results suggest the potential application of Portulaca oleracea L. and PP-10 in the prevention of DEHP-induced inflammatory damages in HUVECs.
Collapse
Affiliation(s)
- Fanli Bu
- Department of Emergency, Dongying People's Hospital, Dongying, China
| | - Man Zheng
- Department of Emergency, Dongying People's Hospital, Dongying, China
| | - Na Li
- Department of Emergency, Dongying People's Hospital, Dongying, China
| | - Xiafeng Yan
- Department of Emergency, Dongying People's Hospital, Dongying, China
| | - Hongwei Xin
- The Second Affiliated Hospital of Qiqihaer Medical College, Qiqihaer, China
| | - Yeting Li
- Department of Emergency, Dongying People's Hospital, Dongying, China
| | - Fenglei Zhang
- Department of Emergency, Dongying People's Hospital, Dongying, China
| |
Collapse
|
2
|
Parisi V, Santoro V, Faraone I, Benedetto N, Vassallo A, De Tommasi N, Milella L, Nesticò A, Maselli G, Fadda AM, Caddeo C. Sonchus asper (L.) Hill extracts: phytochemical characterization and exploitation of its biological activities by loading into nanoformulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1416539. [PMID: 39220011 PMCID: PMC11363874 DOI: 10.3389/fpls.2024.1416539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Introduction The current investigation presents a two-fold approach to rediscovering the potential of Sonchus asper as a wild edible plant, both in its raw extract form and as a nanoformulated product. Furthermore, the study aimed to promote the valorization of traditional dishes and contribute to biodiversity conservation and sustainable use of S. asper, thus enhancing economic profits. Methods Liquid chromatography-mass spectrometry analyses were conducted to characterize the metabolite profile of the raw and cooked leaf extracts, and the extract from discarded leaves. The antioxidant activity, the hypoglycaemic effect and the incorporation into liposomes were evaluated. Results 38 compounds and 6 essential amino acids were identified. The incorporation into liposomes maximized the health-promoting properties for potential pharmaceutical or food applications. Discussion The commercialization of S. asper could: (i) contribute to improving the well-being of rural and urban communities, being S. asper a wild edible plant available at low cost, environmentally friendly, resilient, and adaptable; (ii) generate landowner economic returns.
Collapse
Affiliation(s)
- Valentina Parisi
- Department of Pharmacy, University of Salerno, Fisciano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Valentina Santoro
- Department of Pharmacy, University of Salerno, Fisciano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | | | - Nadia Benedetto
- Department of Science, University of Basilicata, Potenza, Italy
| | - Antonio Vassallo
- Department of Science, University of Basilicata, Potenza, Italy
- Spinoff TNcKILLERS srl, Potenza, Italy
| | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, Fisciano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Luigi Milella
- Department of Science, University of Basilicata, Potenza, Italy
| | - Antonio Nesticò
- Department of Civil Engineering, University of Salerno, Fisciano, Italy
| | - Gabriella Maselli
- Department of Civil Engineering, University of Salerno, Fisciano, Italy
| | - Anna Maria Fadda
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Carla Caddeo
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
3
|
Xu L, Gao G, Zhou Z, Wei Z, Sun W, Li Y, Jiang X, Gu J, Li X, Pi Y. Fermented Purslane ( Portulaca oleracea L.) Supplementation Enhances Growth and Immune Function Parallel to the Regulation of Gut Microbial Butyrate Production in Weaned Piglets. Microorganisms 2024; 12:1403. [PMID: 39065171 PMCID: PMC11278901 DOI: 10.3390/microorganisms12071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Weaning is a challenging period for piglets, characterized by stress-related growth checks, compromised immunity, and gut dysbiosis. Purslane (Portulaca oleracea L.), known for its rich content of antioxidants, has potential as a functional feed ingredient. This study investigates the effects of feeding fermented purslane (FP) on the growth performance, immune function, intestinal microbiota, and metabolic profiles of weaned piglets. Forty-eight weaned piglets were randomly divided into two groups, with eight pens in each group and three pigs in each pen: a control diet (CON group) and a diet supplemented with 0.20% FP (FP group). The experiment lasted 28 days. The results show that FP supplementation did not affect the average daily feed intake (ADFI) but significantly increased the average daily gain (ADG) during the initial 14 days post-weaning. FP supplementation decreased diarrhea occurrence, with a pronounced reduction from days 10 to 13 (p < 0.05). Immunologically, the FP group had a trend towards reduced serum IgA levels on day 14 (p < 0.10). Importantly, the serum concentrations of the pro-inflammatory cytokine IL-6 were significantly reduced on both days 14 and 28 post-weaning. The antioxidative analysis showed increased serum superoxide dismutase (SOD) and decreased catalase (CAT) activities on day 14 (p < 0.05). In addition, FP supplementation significantly decreased serum diamine oxidase (DAO) activity and D-lactate levels by day 28, indicating a potential improvement in gut integrity. Fecal microbiota assessment demonstrated a distinctive clustering of microbial communities between the FP and CON groups, with an increase in the abundance of Clostridium_sensu_stricto_1, Tyzzerella, and Prevotellaceae_NK3B31_group and a decrease in Lactobacillus, Bacillus, and Subdoligranulum in the FP group (p < 0.05). Functional predictions suggested that the relative abundance of microbial butyrate synthesis enzymes (EC 2.7.2.7 and EC 2.3.1.19) was significantly enhanced by FP treatment. This modulation was further corroborated by elevated fecal butyrate levels (p < 0.05). In summary, dietary supplementation with FP promotes early-growth performance and has beneficial effects on immune function and intestinal health in weaned piglets. The enhancements may be attributed to distinct microbiota compositional changes and targeted modulation of microbial butyrate metabolism, which are crucial for piglet post-weaning adaptation and overall health.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Ge Gao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Zian Zhou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (J.G.)
| | - Zixi Wei
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Jingang Gu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (J.G.)
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| |
Collapse
|
4
|
Wang M, Li C, Li J, Hu W, Yu A, Tang H, Li J, Kuang H, Zhang H. Extraction, Purification, Structural Characteristics, Biological Activity and Application of Polysaccharides from Portulaca oleracea L. (Purslane): A Review. Molecules 2023; 28:4813. [PMID: 37375369 DOI: 10.3390/molecules28124813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Portulaca oleracea L. (purslane) is a widely distributed plant with a long history of cultivation and consumption. Notably, polysaccharides obtained from purslane exhibit surprising and satisfactory biological activities, which explain the various benefits of purslane on human health, including anti-inflammatory, antidiabetic, antitumor, antifatigue, antiviral and immunomodulatory effects. This article systematically reviews the extraction and purification methods, chemical structure, chemical modification, biological activity and other aspects of polysaccharides from purslane collected in the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, Baidu Scholar, Google Scholar and CNKI databases in the last 14 years, using the keywords "Portulaca oleracea L. polysaccharides" and "purslane polysaccharides". The application of purslane polysaccharides in different fields is also summarized, and its application prospects are also discussed. This paper provides an updated and deeper understanding of purslane polysaccharides, which will provide useful guidance for the further optimization of polysaccharide structures and the development of purslane polysaccharides as a novel functional material, as well as a theoretical basis for its further research and application in human health and manufacturing development.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Caijiao Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jiaye Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Haipeng Tang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jiayan Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Huijie Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
5
|
Tao X, Hu X, Wu T, Zhou D, Yang D, Li X, Fu Y, Zheng F, Yue H, Dai Y. Characterization and screening of anti-melanogenesis and anti-photoaging activity of different enzyme-assisted polysaccharide extracts from Portulaca oleracea L. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154879. [PMID: 37229889 DOI: 10.1016/j.phymed.2023.154879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The flavonoids and polysaccharides in Portulaca oleracea L. (PO) have significant antibacterial and antioxidant effects, which can inhibit common bacteria and remove free radicals in the body. However, there was little research on the use of PO to alleviate hyperpigmentation and photoaging damage. PURPOSE This study was to investigate the anti-photoaging and whitening activity mechanism of polysaccharide of PO (POP) in vitro and in vivo. METHOD In this study, 16 fractions obtained by four enzyme-assisted extraction from PO and their scavenging capabilities against 2,2-diphenyl-1-picrylhydrazyl and hydroxyl radicals were evaluated. Among these fractions, a polysaccharide fraction (VPOP3) showed the strongest biological activity. VPOP3 was characterized by Fourier-transform infrared spectroscopy, molecular weight (MW), and monosaccharide composition analysis, and the protective effect of VPOP3 on photoaging and hyperpigmentation was researched. RESULTS VPOP3 is a low-MW acidic heteropolysaccharide with MW mainly distributed around 0.71KDa, arabinose as its main monosaccharide component. VPOP3 reliably reduced the reactive oxygen species levels in cells and zebrafish and the level of lipid peroxidation in zebrafish. In addition, VPOP3 inhibited UVB-induced apoptotic body formation and apoptosis by downregulating caspase-3 and Bax and upregulating Bcl-2 in mitochondrion-mediated signaling pathways. On the other hand, VPOP3 at high concentrations significantly downregulated the expression of microphthalmia-associated transcription factor, tyrosinase (TYR), and TYR-related protein-1 and TYR-related protein-2 in the melanogenic signaling pathway to achieve a whitening effect. CONCLUSION The above results showed that VPOP3 has superior activities of anti-photoaging and anti-melanogenesis and can be utilized as a safe resource in the manufacture of cosmetics.
Collapse
Affiliation(s)
- Xingyu Tao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xuan Hu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Tongchuan Wu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dongyue Zhou
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Di Yang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xue Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yunhua Fu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Fei Zheng
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hao Yue
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yulin Dai
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
6
|
Potential Functional Food Products and Molecular Mechanisms of Portulaca Oleracea L. on Anticancer Activity: A Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7235412. [PMID: 36193066 PMCID: PMC9526644 DOI: 10.1155/2022/7235412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/01/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
Portulaca oleracea Linn. (P. oleracea L.) has recently gained attention as a functional food due to the chemical composition of this plant regarding bioactive compounds. The special attention to the use of P. oleracea as an ingredient in functional food products is also due to the promotion of sustainable food. It is an unconventional food plant, and its consumption may contribute to preserving biodiversity due to its cultivation in a polyculture system. Food sovereignty may be achieved, among other strategies, with the consumption of unconventional food plants that are more resistant in nature and easily cultivated in small places. P. oleracea grows spontaneously and may be found in streets and sidewalks, or it may be cultivated with seeds and cuttings propagation. The culinary versatility of P. oleracea opens up opportunities to explore the development of sustainable, functional food products. This mini-review shows that functional food products developed from P. oleracea are already available at the research level, but it is expected that more scientific literature focusing on the development of P. oleracea functional products with proven anticancer activities may be released in the near future. Polysaccharides, some phenolic compounds, alkaloids, and cerebrosides are associated with the inhibition and prevention of carcinogenesis through in vitro and in vivo investigations. The anticancer activities of P. oleracea, its bioactive compounds, and the involved molecular mechanisms have been reported in the literature. The importance of further elucidating the cancer inhibition mechanisms is in the interest of forthcoming applications in the development of food products with anticancer properties for implementation in the human diet.
Collapse
|
7
|
Sedaghati B, Haddad R, Bandehpour M. Purslane (Portulaca oleracea L.) as a novel green-bioreactor for expression of human serum albumin (HSA) gene. Transgenic Res 2022; 31:369-380. [DOI: 10.1007/s11248-022-00296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
|
8
|
Cao Y, Hao R, Guo Z, Han L, Yu Q, Zhang W. Combined effects of superchilling and natural extracts on beef preservation quality. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Kumar A, Sreedharan S, Singh P, Achigan-Dako EG, Ramchiary N. Improvement of a Traditional Orphan Food Crop, Portulaca oleracea L. (Purslane) Using Genomics for Sustainable Food Security and Climate-Resilient Agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.711820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purslane (Portulaca oleracea L.) is a popular orphan crop used for its nutritional properties in various parts of the world. It is considered one of the richest terrestrial sources of omega-3 and omega-6-fatty acids (ω-3 and 6-FAs) suggesting its importance for human health. This ethnomedicinal plant is also an important part of traditional healing systems among the indigenous people. Many studies have indicated its tolerance against multiple stresses and found that it easily grows in a range of environmental gradients. It has also been considered one of the important biosaline crops for the future. Despite its huge nutritional, economic, and medicinal importance, it remains neglected to date. Most of the studies on purslane were focused on its ethnomedicinal, phytochemical, pharmacological, and stress-tolerance properties. Only a few studies have attempted genetic dissection of the traits governing these traits. Purslane being an important traditional food crop across the globe can be valorized for a sustainable food security in the future. Therefore, this review is an attempt to highlight the distribution, domestication, and cultivation of purslane and its importance as an important stress-tolerant food and a biosaline crop. Furthermore, identification of genes and their functions governing important traits and its potential for improvement using genomics tools for smart and biosaline agriculture has been discussed.
Collapse
|
10
|
Kumar A, Anju T, Kumar S, Chhapekar SS, Sreedharan S, Singh S, Choi SR, Ramchiary N, Lim YP. Integrating Omics and Gene Editing Tools for Rapid Improvement of Traditional Food Plants for Diversified and Sustainable Food Security. Int J Mol Sci 2021; 22:8093. [PMID: 34360856 PMCID: PMC8348985 DOI: 10.3390/ijms22158093] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Indigenous communities across the globe, especially in rural areas, consume locally available plants known as Traditional Food Plants (TFPs) for their nutritional and health-related needs. Recent research shows that many TFPs are highly nutritious as they contain health beneficial metabolites, vitamins, mineral elements and other nutrients. Excessive reliance on the mainstream staple crops has its own disadvantages. Traditional food plants are nowadays considered important crops of the future and can act as supplementary foods for the burgeoning global population. They can also act as emergency foods in situations such as COVID-19 and in times of other pandemics. The current situation necessitates locally available alternative nutritious TFPs for sustainable food production. To increase the cultivation or improve the traits in TFPs, it is essential to understand the molecular basis of the genes that regulate some important traits such as nutritional components and resilience to biotic and abiotic stresses. The integrated use of modern omics and gene editing technologies provide great opportunities to better understand the genetic and molecular basis of superior nutrient content, climate-resilient traits and adaptation to local agroclimatic zones. Recently, realizing the importance and benefits of TFPs, scientists have shown interest in the prospection and sequencing of TFPs for their improvements, cultivation and mainstreaming. Integrated omics such as genomics, transcriptomics, proteomics, metabolomics and ionomics are successfully used in plants and have provided a comprehensive understanding of gene-protein-metabolite networks. Combined use of omics and editing tools has led to successful editing of beneficial traits in several TFPs. This suggests that there is ample scope for improvement of TFPs for sustainable food production. In this article, we highlight the importance, scope and progress towards improvement of TFPs for valuable traits by integrated use of omics and gene editing techniques.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Science, Central University of Kerala, Kasaragod 671316, Kerala, India; (T.A.); (S.S.)
| | - Thattantavide Anju
- Department of Plant Science, Central University of Kerala, Kasaragod 671316, Kerala, India; (T.A.); (S.S.)
| | - Sushil Kumar
- Department of Botany, Govt. Degree College, Kishtwar 182204, Jammu and Kashmir, India;
| | - Sushil Satish Chhapekar
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| | - Sajana Sreedharan
- Department of Plant Science, Central University of Kerala, Kasaragod 671316, Kerala, India; (T.A.); (S.S.)
| | - Sonam Singh
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| | - Su Ryun Choi
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| | - Yong Pyo Lim
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| |
Collapse
|
11
|
Zhu Y, Huang Y, Santos HO, de Oliveira CVC, Zhou H, Tang N. Effects of purslane supplementation on C-reactive protein levels and biomarkers of oxidative stress as marks for metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2021; 35:5477-5486. [PMID: 34109686 DOI: 10.1002/ptr.7182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 11/06/2022]
Abstract
The antioxidant and antiinflammatory properties of purslane (Portulaca oleracea L.) are known in preclinical studies but further examination is needed to expand their potential into the clinical scenario. A systematic review and meta-analysis of randomized controlled trials were performed to elucidate the effects of purslane supplementation on C-reactive protein (CRP) levels and biomarkers of oxidative stress in metabolic syndrome, its related complications, and other diseases. PubMed/MEDLINE, Web of Science, SCOPUS, and Embase were the databases searched. Heterogeneity was examined using the I-squared (I2 ) statistic, in which the source of heterogeneity was determined if the I2 -value was >50%. After all the screening processes, 10 studies met the eligibility criteria and were analyzed. Following purslane supplementation, CRP levels decreased significantly (weighted mean difference [WMD]: -0.33 mg/dl, 95% confidence interval [CI]: -0.66, -0.004, p = .047) but with significant heterogeneity (I2 = 87.4%, p = .001). Purslane supplementation did not significantly change serum levels of malondialdehyde (MDA) (WMD: -0.353 μm/L; 95% CI: -0.920, 0.213; I2 = 50.7%), total antioxidant capacity (TAC) (WMD: 0.090 mm/L, 95% CI: -0.081, 0.262; I2 = 47.1%), and superoxide dismutase (SOD) (WMD: 6.54 U/ml, 95% CI: -22.150, 35.236; I2 = 70.7%). Thus, this meta-analysis showed a positive effect of purslane supplementation as a tool to decrease CRP levels, but not to MDA, TAC, and SOD levels.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yubing Huang
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Brazil
| | | | - Hui Zhou
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Nie Tang
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
12
|
Callegari Ferrari R, Pires Bittencourt P, Yumi Nagumo P, Silva Oliveira W, Aurineide Rodrigues M, Hartwell J, Freschi L. Developing Portulaca oleracea as a model system for functional genomics analysis of C 4/CAM photosynthesis. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:666-682. [PMID: 33256895 DOI: 10.1071/fp20202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Previously regarded as an intriguing photosynthetic curiosity, the occurrence of C4 and Crassulacean acid metabolism (CAM) photosynthesis within a single organism has recently emerged as a source of information for future biotechnological use. Among C4/CAM facultative species, Portulaca oleracea L. has been used as a model for biochemical and gene expression analysis of C4/CAM under field and laboratory conditions. In the present work, we focussed on developing molecular tools to facilitate functional genomics studies in this species, from the optimisation of RNA isolation protocols to a method for stable genetic transformation. Eleven variations of RNA extraction procedures were tested and compared for RNA quantity and quality. Also, 7 sample sets comprising total RNA from hormonal and abiotic stress treatments, distinct plant organs, leaf developmental stages, and subspecies were used to select, among 12 reference genes, the most stable reference genes for RT-qPCR analysis of each experimental condition. Furthermore, different explant sources, Agrobacterium tumefaciens strains, and regeneration and antibiotic selection media were tested in various combinations to optimise a protocol for stable genetic transformation of P. oleracea. Altogether, we provide essential tools for functional gene analysis in the context of C4/CAM photosynthesis, including an efficient RNA isolation method, preferred reference genes for RT-qPCR normalisation for a range of experimental conditions, and a protocol to produce P. oleracea stable transformants using A. tumefaciens.
Collapse
Affiliation(s)
- Renata Callegari Ferrari
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brasil
| | - Priscila Pires Bittencourt
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brasil
| | - Paula Yumi Nagumo
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brasil
| | - Willian Silva Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brasil
| | - Maria Aurineide Rodrigues
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brasil
| | - James Hartwell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brasil; and Corresponding author.
| |
Collapse
|
13
|
Drake A, Keitel C, Pattison A. The use of Australian native grains as a food: a review of research in a global grains context. RANGELAND JOURNAL 2021. [DOI: 10.1071/rj21030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Australian native grains have an extended history of human consumption; however, their place in diets was disrupted when colonisation triggered a shift away from traditional lifestyles for Aboriginal people. Despite being time- and energy-intensive to harvest, the inclusion of native grains in diets is thought to have offered considerable adaptive advantage by assisting human occupation of arid and semiarid zones. Ethnographic evidence has shown that Aboriginal people developed specialised tools and techniques to transform grain into more edible forms. Research on native grain consumption has mainly been conducted from an ethnographic perspective, with the objective of furthering understanding of Aboriginal societies, instead of the agricultural or food science significance of these plant species. Consequently, a research gap in all aspects of Australian native grains in modern food-production systems from the paddock to plate has emerged, and is being filled by research projects in multiple parts of the country due to surging interest in this food system. There is a critical need for Aboriginal communities, land managers, food industry professionals and research institutions to come together and set a research agenda that ensures cultural protocols are respected, research investment is not unnecessarily duplicated, and the results are targeted to places where they will be of most benefit to people and the planet.
Collapse
|
14
|
Liu ZH, Niu FJ, Xie YX, Xie SM, Liu YN, Yang YY, Zhou CZ, Wan XH. A review: Natural polysaccharides from medicinal plants and microorganisms and their anti-herpetic mechanism. Biomed Pharmacother 2020; 129:110469. [DOI: 10.1016/j.biopha.2020.110469] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
|
15
|
Adventitious shoot organogenesis from leaf explants of Portulaca pilosa L. Sci Rep 2020; 10:3675. [PMID: 32111887 PMCID: PMC7048842 DOI: 10.1038/s41598-020-60651-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/17/2020] [Indexed: 11/30/2022] Open
Abstract
This study established, for the first time, shoot proliferation and plant regeneration protocols via shoot organogenesis from leaf explants of a medical and ornamental plant, Portulaca pilosa L. The optimal proliferation of axillary shoots was 6.2-fold within 30 days on Murashige and Skoog (MS) medium supplemented with 3.0 µM 6-benzyladenine (BA). Shoots could be induced directly from leaf explants, forming an average of 3.8 adventitious shoots per explant, on optimal MS medium supplemented with 1.0 µM thidiazuron (TDZ) and 0.1 µM α-naphthaleneacetic acid (NAA). A higher concentration of TDZ (3.0 µM), alone or in combination with 0.1 µM NAA, induced somatic embryo-like shoot buds and then developed into real shoots. Rooting was easier since roots were induced on all rooting media within one month. Half-strength MS medium free of plant growth regulators was best for rooting. Rooted plantlets were transferred to a sand: perlite (1:1, v/v) substrate, resulting in highest survival (90%). Plantlets showed more robust growth, however, on substrates of yellow mud: perlite (1:1, v/v) or peat soil: vermiculite: perlite (1:1:1, v/v).
Collapse
|
16
|
Gheflati A, Adelnia E, Nadjarzadeh A. The clinical effects of purslane (
Portulaca oleracea
) seeds on metabolic profiles in patients with nonalcoholic fatty liver disease: A randomized controlled clinical trial. Phytother Res 2019; 33:1501-1509. [DOI: 10.1002/ptr.6342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Alireza Gheflati
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical Sciences Yazd Iran
- Department of Nutrition, School of Public HealthShahid Sadoughi University of Medical Sciences Yazd Iran
| | - Elham Adelnia
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical Sciences Yazd Iran
- Department of Nutrition, School of Public HealthShahid Sadoughi University of Medical Sciences Yazd Iran
| | - Azadeh Nadjarzadeh
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical Sciences Yazd Iran
- Department of Nutrition, School of Public HealthShahid Sadoughi University of Medical Sciences Yazd Iran
| |
Collapse
|
17
|
Melilli MG, Pagliaro A, Bognanni R, Scandurra S, Di Stefano V. Antioxidant activity and fatty acids quantification in Sicilian purslane germplasm. Nat Prod Res 2019; 34:26-33. [PMID: 30663361 DOI: 10.1080/14786419.2018.1560291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Portulaca oleracea is an annual succulent herb in the family Portulacaceae. It is a nutritious vegetable with high antioxidant properties and, it is among the richest plant source of ω-3 fatty acids, as well as a rich source of ω-6 fatty acids, ascorbic acid, tocopherols and beta-carotene. In the present study, three purslane populations under different Mediterranean environmental conditions for two years, for future valorization as novel food sources of omega-3 fatty acids, were evaluated. In particular, biomorphological characteristics, total phenols and fatty acids content were determined. The antioxidant activities were evaluated using 2,2-diphenyl-1-picrylhydrazyl assay. The population "Cas" appears to have higher antioxidant activity than the other two populations ("Cal" and "S. Ven").The saturated fatty acid content is influenced only by the year of collection, while the polyunsaturated fatty acid by the populations. The most abundant unsatured fatty acids are linoleic and linolenic acids and "Cas" attained the highest contents.
Collapse
Affiliation(s)
- Maria Grazia Melilli
- National Council of Research, Institute for Agricultural and Forest Systems in the Mediterranean - Catania, Italy
| | - Antonella Pagliaro
- National Council of Research, Institute for Agricultural and Forest Systems in the Mediterranean - Catania, Italy.,University of Foggia-Department of Agricultural Sciences, Food and Environment, Foggia, Italy
| | - Rosaria Bognanni
- National Council of Research, Institute for Agricultural and Forest Systems in the Mediterranean - Catania, Italy
| | - Salvatore Scandurra
- National Council of Research, Institute for Agricultural and Forest Systems in the Mediterranean - Catania, Italy
| | - Vita Di Stefano
- University of Palermo-Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), Palermo, Italy
| |
Collapse
|
18
|
Fan XJ, Liu SZ, Li HH, He J, Feng JT, Zhang X, Yan H. Effects of Portulaca oleracea L. extract on lipid oxidation and color of pork meat during refrigerated storage. Meat Sci 2019; 147:82-90. [DOI: 10.1016/j.meatsci.2018.08.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 11/27/2022]
|
19
|
The genus Portulaca as a suitable model to study the mechanisms of plant tolerance to drought and salinity. THE EUROBIOTECH JOURNAL 2018. [DOI: 10.2478/ebtj-2018-0014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Drought and soil salinity are at present the major factors responsible for the global reduction of crop yields, and the problem will become more severe in the coming decades because of climate change effects. The most promising strategy to achieve the increased agricultural production that will be required to meet food demands worldwide will be based on the enhancement of crop stress tolerance, by both, traditional breeding and genetic engineering. This, in turn, requires a deep understanding of the mechanisms of tolerance which, although based on a conserved set of basic responses, vary widely among plant species. Therefore, the use of different plant models to investigate these mechanisms appears to be a sensible approach. The genus Portulaca could be a suitable model to carry out these studies, as some of its taxa have been described as tolerant to drought and/or salinity. Information on relevant mechanisms of tolerance to salt and water stress can be obtained by correlating the activation of specific defence pathways with the relative stress resistance of the investigated species. Also, species of the genus could be economically attractive as ‘new’ crops for ‘saline’ and ‘arid’, sustainable agriculture, as medicinal plants, highly nutritious vegetable crops and ornamentals.
Collapse
|
20
|
Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today's society. Food Chem Toxicol 2017; 110:165-188. [DOI: 10.1016/j.fct.2017.10.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
|
21
|
Bacchetta L, Visioli F, Cappelli G, Caruso E, Martin G, Nemeth E, Bacchetta G, Bedini G, Wezel A, van Asseldonk T, van Raamsdonk L, Mariani F. A manifesto for the valorization of wild edible plants. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:180-187. [PMID: 27321281 DOI: 10.1016/j.jep.2016.05.061] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wild foods constitute an essential component of people's diets around the world, but despite their widespread use and their cultural importance, wild edible plants (WEPs) lack recognition as significant contributors to the human diet in developed countries. MATERIALS AND METHODS We stimulate national and international bodies dealing with food and agriculture, to increase their attention and investments on WEPs, leveraging the results of scientific investigation, enhancing the link between in situ conservation strategies and sustainable use of plant genetic diversity. RESULTS AND CONCLUSIONS WEPs should be reconsidered throughout their value chain, capturing their important socio-cultural, health, and economic benefits to indigenous and local communities and family farmers who are engaged in their production and wild-harvesting.
Collapse
Affiliation(s)
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, Italy; IMDEA-Food, CEI UAM+CSIC, Madrid, Spain.
| | - Giulia Cappelli
- Institute Cell Biology and Neurobiology, National Research Council, Monterotondo, RM, Italy
| | | | | | - Eva Nemeth
- Szent István University Budapest, Hungary
| | | | | | | | | | | | - Francesca Mariani
- Institute Cell Biology and Neurobiology, National Research Council, Monterotondo, RM, Italy
| |
Collapse
|
22
|
Phytochemical composition and bioactive compounds of common purslane ( Portulaca oleracea L.) as affected by crop management practices. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.06.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Effect of salinity on biomass yield and physiological and stem-root anatomical characteristics of purslane (Portulaca oleracea L.) accessions. BIOMED RESEARCH INTERNATIONAL 2015; 2015:105695. [PMID: 25802833 PMCID: PMC4352753 DOI: 10.1155/2015/105695] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 12/08/2014] [Accepted: 12/08/2014] [Indexed: 01/10/2023]
Abstract
13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m−1. Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P < 0.05) reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m−1 salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m−1 salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA) has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession.
Collapse
|