1
|
Chen X, Wu Z, Yang Y, Tao Q, Na N, Wan W, Tian C, Gong W, Li Z. The complete mitochondrial genome and phylogenetic analysis of Lotus corniculatus (Fabaceae, Papilionoideae). FRONTIERS IN PLANT SCIENCE 2025; 16:1555595. [PMID: 40134620 PMCID: PMC11933009 DOI: 10.3389/fpls.2025.1555595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/14/2025] [Indexed: 03/27/2025]
Abstract
Introduction Lotus corniculatus is a perennial leguminous herb and serves as a high-quality forage, playing a key role in both grassland ecological restoration and the development of grazing livestock farming. Methods In this study, we successfully assembled the L. corniculatus mitochondrial genome and investigated various related aspects, including genomic features, RNA editing sites, codon preference, gene transfer events, and phylogeny. Results and discussion We found that the length of the L. corniculatus mitochondrial genome is 401,301 bp, and its GC content is 45.15%. It consists of 53 genes, comprising 32 protein-coding genes, 3 ribosomal RNA genes, and 18 transfer RNA genes. A total of 146 scattered repeats, 8 tandem repeats, and 124 simple sequence repeats are present in the mitochondrial genome. A thorough examination of all protein-coding genes revealed 485 instances of RNA editing and 9579 codons. Additionally, 57 homologous fragments were identified in L. corniculatus mitochondrial genome and chloroplast genomes, accounting for approximately 4.04% of the L. corniculatus mitochondrial genome. Furthermore, a phylogenetic tree based on mitochondrial genome data from 33 species belonging to four Fabaceae subfamilies and two species from other families validated the evolutionary relationship of Lotus. These findings have significant implications for understanding the organization and evolution of the L. corniculatus mitochondrial genome as well as for the identification of genetic markers. They also offer valuable perspectives relevant to devising strategies for molecular breeding and evolutionary categorization of legumes.
Collapse
Affiliation(s)
- Xiaofei Chen
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Grassland Research, CAAS, Hohhot, China
| | - Yanting Yang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Grassland Research, CAAS, Hohhot, China
| | - Qibo Tao
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Na Na
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Grassland Research, CAAS, Hohhot, China
| | - Wenya Wan
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Chunyu Tian
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Grassland Research, CAAS, Hohhot, China
| | - Wenlong Gong
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Grassland Research, CAAS, Hohhot, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Ministry of Agriculture of the People's Republic of China, Institute of Grassland Research, CAAS, Hohhot, China
| |
Collapse
|
2
|
Cai G, Niu M, Sun Z, Wang H, Zhang S, Liu F, Wu Y, Wang G. A small heat shock protein (SlHSP17.3) in tomato plays a positive role in salt stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1443625. [PMID: 39464285 PMCID: PMC11503465 DOI: 10.3389/fpls.2024.1443625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
Small heat shock proteins (sHSPs) are molecular chaperones that are widely present in plants and play a vital role in the response of plants to various environmental stimuli. This study employed transgenic Arabidopsis to investigate the impact of the new tomato (Solanum lycopersicum) sHSP protein (SlHSP17.3) on salt stress tolerance. Transient conversion analysis of Arabidopsis protoplasts revealed that SlHSP17.3 localized to the cytoplasm. Furthermore, as suggested by expression analysis, salt stress stimulated SlHSP17.3 expression, suggesting that SlHSP17.3 is involved in the salt stress response of plants. SlHSP17.3-overexpressing plants presented greater germination rates, fresh weights, chlorophyll contents, and Fv/Fm ratios, as well as longer root lengths, lower reactive oxygen species (ROS) levels, and lighter cell membrane injury under salt stress. Furthermore, certain stress-related genes (AtCOR15, AtDREB1B, and AtHSFA2) were up-regulated in salt-stressed transgenic plants. Overall, SlHSP17.3 overexpression improved the salt stress resistance of transgenic plants, mainly through increasing AtCOR15, AtDREB1B, and AtHSFA2 expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guodong Wang
- School of Biological Sciences, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
3
|
Yan M, Yang D, He Y, Ma Y, Zhang X, Wang Q, Gao J. Alfalfa Responses to Intensive Soil Compaction: Effects on Plant and Root Growth, Phytohormones and Internal Gene Expression. PLANTS (BASEL, SWITZERLAND) 2024; 13:953. [PMID: 38611482 PMCID: PMC11013635 DOI: 10.3390/plants13070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
The perennial legume alfalfa (Medicago sativa L.) is of high value in providing cheap and high-nutritive forages. Due to a lack of tillage during the production period, the soil in which alfalfa grows prunes to become compacted through highly mechanized agriculture. Compaction deteriorates the soil's structure and fertility, leading to compromised alfalfa development and productivity. However, the way alfalfa responses to different levels of soil compaction and the underlying molecular mechanism are still unclear. In this study, we systematically evaluated the effects of gradient compacted soil on the growth of different cultivars of alfalfa, especially the root system architecture, phytohormones and internal gene expression profile alterations. The results showed that alfalfa growth was facilitated by moderate soil compaction, but drastically inhibited when compaction was intensified. The inhibition effect was universal across different cultivars, but with different severity. Transcriptomic and physiological studies revealed that the expression of a set of genes regulating the biosynthesis of lignin and flavonoids was significantly repressed in compaction treated alfalfa roots, and this might have resulted in a modified secondary cell wall and xylem vessel formation. Phytohormones, like ABA, are supposed to play pivotal roles in the regulation of the overall responses. These findings provide directions for the improvement of field soil management in alfalfa production and the molecular breeding of alfalfa germplasm with better soil compaction resilience.
Collapse
Affiliation(s)
- Mingke Yan
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Dongming Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yijun He
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonglong Ma
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
- School of Agronomy, Ningxia University, Yinchuan 750021, China
| | - Xin Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Quanzhen Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jinghui Gao
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
4
|
Wang P, Zhang T, Li Y, Zhao X, Liu W, Hu Y, Wang J, Zhou Y. Comprehensive analysis of Dendrobium catenatum HSP20 family genes and functional characterization of DcHSP20-12 in response to temperature stress. Int J Biol Macromol 2024; 258:129001. [PMID: 38158058 DOI: 10.1016/j.ijbiomac.2023.129001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Heat shock proteins (HSPs) are a class of protective proteins in response to abiotic stress in plants, and HSP20 plays an essential role in response to temperature stress. However, there are few studies on HSP20 in Dendrobium catenatum. In this study, 18 DcHSP20 genes were identified from the D. catenatum genome. Phylogenetic analysis showed that DcHSP20s could be classified into six subgroups, each member of which has similar conserved motifs and gene structures. Gene expression analysis of 18 DcHSP20 genes revealed that they exhibited variable expression patterns in different plant tissues. Meanwhile, all 18 DcHSP20 genes were induced to be up-regulated under high temperature, while six genes (DcHSP20-2/9/10/12/16/17) were significantly up-regulated under low temperature. Moreover, combining gene expression under high and low temperature stress, the DcHSP20-12 gene was cloned for functional analysis. The germination ratios, fresh weights, root lengths of two DcHSP20-12-overexpressing transgenic Arabidopsis thaliana lines were significantly higher, but MDA contents were lower than that of wild-type (WT) plants under heat and cold stresses, displayed enhanced thermotolerance and cold-resistance. These results lay a foundation for the functional characterization of DcHSP20s and provide a candidate gene, DcHSP20-12, for improving the tolerance of D. catenatum to temperature stress in the future.
Collapse
Affiliation(s)
- Peng Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Tingting Zhang
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
| | - Yuxin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Xi Zhao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Wen Liu
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Yanping Hu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China; Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou 571199, Hainan, China
| | - Jian Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Yang Zhou
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China.
| |
Collapse
|
5
|
Ding X, Lv M, Liu Y, Guo Q, Gai J, Yang S. A small heat shock protein GmHSP18.5a improves the male fertility restorability of cytoplasmic male sterility-based restorer line under high temperature stress in soybean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111867. [PMID: 37741497 DOI: 10.1016/j.plantsci.2023.111867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Small heat shock protein (sHSP) is involved in high temperature (HT) stress response. However, the function of sHSPs in regulating male fertility of soybean under HT stress remains largely unknown. Here, we identified a sHSP gene, GmHSP18.5a, which was responded to HT stress during flowering in cytoplasmic male sterility (CMS)-based restorer line of soybean. Moreover, GmHSFA6b turned out to directly activated the expression of GmHSP18.5a by binding to the heat shock cis-element in its promoter. Overexpression of GmHSP18.5a increased male fertility in transgenic Arabidopsis, soybean CMS-based restorer line and its hybrid F1 with CMS line under HT stress. Reactive oxygen species (ROS) content detection revealed that GmHSP18.5a promoted the ROS scavenging ability of Arabidopsis inflorescence and soybean flower bud under HT stress. Enzyme activity assay and gene expression analysis indicated that GmHS18.5a mainly increased the activity of antioxidant enzymes and the expression level of ROS metabolism-related genes under HT stress. Our results indicated that GmHSP18.5a improved the male fertility restorability of CMS-based restorer line in soybean by regulating ROS metabolic pathway and reducing ROS accumulation. Our findings not only revealed the molecular mechanism of sHSP regulating the male fertility of soybean under HT stress, but also provided a theoretical basis for creating strong restorer line with thermotolerance.
Collapse
Affiliation(s)
- Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio-breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Menglin Lv
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio-breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ying Liu
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio-breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qingling Guo
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio-breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio-breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio-breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
6
|
Wang YX, Yu TF, Wang CX, Wei JT, Zhang SX, Liu YW, Chen J, Zhou YB, Chen M, Ma YZ, Lan JH, Zheng JC, Li F, Xu ZS. Heat shock protein TaHSP17.4, a TaHOP interactor in wheat, improves plant stress tolerance. Int J Biol Macromol 2023; 246:125694. [PMID: 37414309 DOI: 10.1016/j.ijbiomac.2023.125694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Adaptation to drought and salt stresses is a fundamental part of plant cell physiology and is of great significance for crop production under environmental stress. Heat shock proteins (HSPs) are molecular chaperones that play a crucial role in folding, assembling, translocating, and degrading proteins. However, their underlying mechanisms and functions in stress tolerance remain elusive. Here, we identified the HSP TaHSP17.4 in wheat by analyzing the heat stress-induced transcriptome. Further analysis showed that TaHSP17.4 was significantly induced under drought, salt, and heat stress treatments. Intriguingly, yeast-two-hybrid analysis showed that TaHSP17.4 interacts with the HSP70/HSP90 organizing protein (HOP) TaHOP, which plays a significant role in linking HSP70 and HSP90. We found that TaHSP17.4- and TaHOP-overexpressing plants have a higher proline content and a lower malondialdehyde content than wild-type plants under stress conditions and display strong tolerance to drought, salt, and heat stress. Additionally, qRT-PCR analysis showed that stress-responsive genes relevant to reactive oxygen species scavenging and abscisic acid signaling pathways were significantly induced in TaHSP17.4- and TaHOP-overexpressing plants under stress conditions. Together, our findings provide insight into HSP functions in wheat and two novel candidate genes for improvement of wheat varieties.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China
| | - Chun-Xiao Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Ji-Tong Wei
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Shuang-Xi Zhang
- Institute of Crop Science, Ningxia Academy of Agriculture and Forestry Sciences, Yongning 750105, China
| | - Yong-Wei Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Jin-Hao Lan
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Jia-Cheng Zheng
- Anhui Science and Technology University, College of Agronomy, Fengyang 233100, China
| | - Feng Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China.
| |
Collapse
|
7
|
Jiang X, Yu A, Zhang F, Yang T, Wang C, Gao T, Yang Q, Yu LX, Wang Z, Kang J. Identification of QTL and candidate genes associated with biomass yield and Feed Quality in response to water deficit in alfalfa ( Medicago sativa L.) using linkage mapping and RNA-Seq. FRONTIERS IN PLANT SCIENCE 2022; 13:996672. [PMID: 36325545 PMCID: PMC9619099 DOI: 10.3389/fpls.2022.996672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Biomass yield and Feed Quality are the most important traits in alfalfa (Medicago sativa L.), which directly affect its economic value. Drought stress is one of the main limiting factors affecting alfalfa production worldwide. However, the genetic and especially the molecular mechanisms for drought tolerance in alfalfa are poorly understood. In this study, linkage mapping was performed in an F1 population by combining 12 phenotypic data (biomass yield, plant height, and 10 Feed Quality-related traits). A total of 48 significant QTLs were identified on the high-density genetic linkage maps that were constructed in our previous study. Among them, nine main QTLs, which explained more than 10% phenotypic variance, were detected for biomass yield (one), plant height (one), CP (two), ASH (one), P (two), K(one), and Mg (one). A total of 31 candidate genes were identified in the nine main QTL intervals based on the RNA-seq analysis under the drought condition. Blast-P was further performed to screen candidate genes controlling drought tolerance, and 22 functional protein candidates were finally identified. The results of the present study will be useful for improving drought tolerance of alfalfa varieties by marker-assisted selection (MAS), and provide promising candidates for further gene cloning and mechanism study.
Collapse
Affiliation(s)
- Xueqian Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Andong Yu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianhui Yang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, China
| | - Chuan Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, China
| | - Ting Gao
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long-Xi Yu
- Plant Germplasm Introduction and Testing Research, United States Department of Agriculture-Agricultural Research Service, Prosser, WA, United States
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Liu Y, Cai Y, Li Y, Zhang X, Shi N, Zhao J, Yang H. Dynamic changes in the transcriptome landscape of Arabidopsis thaliana in response to cold stress. FRONTIERS IN PLANT SCIENCE 2022; 13:983460. [PMID: 36110360 PMCID: PMC9468617 DOI: 10.3389/fpls.2022.983460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Plants must reprogram gene expression to adapt constantly changing environmental temperatures. With the increased occurrence of extremely low temperatures, the negative effects on plants, especially on growth and development, from cold stress are becoming more and more serious. In this research, strand-specific RNA sequencing (ssRNA-seq) was used to explore the dynamic changes in the transcriptome landscape of Arabidopsis thaliana exposed to cold temperatures (4°C) at different times. In total, 7,623 differentially expressed genes (DEGs) exhibited dynamic temporal changes during the cold treatments. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the DEGs were enriched in cold response, secondary metabolic processes, photosynthesis, glucosinolate biosynthesis, and plant hormone signal transduction pathways. Meanwhile, long non-coding RNAs (lncRNAs) were identified after the assembly of the transcripts, from which 247 differentially expressed lncRNAs (DElncRNAs) and their potential target genes were predicted. 3,621 differentially alternatively spliced (DAS) genes related to RNA splicing and spliceosome were identified, indicating enhanced transcriptome complexity due to the alternative splicing (AS) in the cold. In addition, 739 cold-regulated transcription factors (TFs) belonging to 52 gene families were identified as well. This research analyzed the dynamic changes of the transcriptome landscape in response to cold stress, which reveals more complete transcriptional patterns during short- and long-term cold treatment and provides new insights into functional studies of that how plants are affected by cold stress.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yajun Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaoling Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Nan Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jingze Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- RNA Institute, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Wu J, Gao T, Hu J, Zhao L, Yu C, Ma F. Research advances in function and regulation mechanisms of plant small heat shock proteins (sHSPs) under environmental stresses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154054. [PMID: 35202686 DOI: 10.1016/j.scitotenv.2022.154054] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 05/27/2023]
Abstract
Plants respond to various stresses by triggering the expression of genes that encode proteins involved in plant growth, fruit ripening, cellular protein homeostasis, and tolerance systems. sHSPs, a subfamily of heat shock proteins (HSPs), can be expressed in plants to inhibit abnormal aggregation of proteins and protect normal proteins by interacting with folding target proteins, protect cell integrity, and improve resistance under various adverse conditions. Thus, sHSPs have significant influences on seed germination and plant development. In this review, the classification, structure, and functions of sHSP family members in plants are systematically summarized, with emphasis on their roles in promoting fruit ripening and plant growth by reducing the accumulation of ROS, improving the survival rate of plants and the antioxidant activity, and protecting photosynthesis under biotic and abiotic stresses. Meanwhile, the production and regulatory mechanisms of sHSPs are described in detail. Heat shock factors, long non-coding RNA (lncRNAs), microRNA (miRNAs), and FK506 binding proteins are related to the production process of sHSPs. Molecular chaperone complex HSP70/100, plastidic proteins, and abscisic acid (ABA) are involved in the regulatory mechanisms of sHSPs. Besides, scientific efforts and practices for improving plant stress resistance have carried out the constitutive expression of sHSPs in transgenic plants in recent years. It is a powerful path for inducing the protective mechanisms of plants under various stresses. Therefore, exploring the role of sHSPs in the plant defense system paves a way for comprehensively unraveling plant tolerance in response to biotic and abiotic stress.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China.
| | - Tian Gao
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Jianing Hu
- Dalian Neusoft University of Information, Dalian 116032, People's Republic of China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Chang Yu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
10
|
Kim EY, Wang L, Lei Z, Li H, Fan W, Cho J. Ribosome stalling and SGS3 phase separation prime the epigenetic silencing of transposons. NATURE PLANTS 2021; 7:303-309. [PMID: 33649597 DOI: 10.1038/s41477-021-00867-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/01/2021] [Indexed: 05/20/2023]
Abstract
Transposable elements (TEs, transposons) are mobile DNAs that can cause fatal mutations1. To suppress their activity, host genomes deploy small interfering RNAs (siRNAs) that trigger and maintain their epigenetic silencing2,3. Whereas 24-nucleotide (nt) siRNAs mediate RNA-directed DNA methylation (RdDM) to reinforce the silent state of TEs3, activated or naive TEs give rise to 21- or 22-nt siRNAs by the RNA-DEPENDENT RNA POLYMERASE 6 (RDR6)-mediated pathway, triggering both RNAi and de novo DNA methylation4,5. This process, which is called RDR6-RdDM, is critical for the initiation of epigenetic silencing of active TEs; however, their specific recognition and the selective processing of siRNAs remain elusive. Here, we suggest that plant transposon RNAs undergo frequent ribosome stalling caused by their unfavourable codon usage. Ribosome stalling subsequently induces RNA truncation and localization to cytoplasmic siRNA bodies, both of which are essential prerequisites for RDR6 targeting6,7. In addition, SUPPRESSOR OF GENE SILENCING 3 (SGS3), the RDR6-interacting protein7, exhibits phase separation both in vitro and in vivo through its prion-like domains, implicating the role of liquid-liquid phase separation in siRNA body formation. Our study provides insight into the host recognition of active TEs, which is important for the maintenance of genome integrity.
Collapse
Affiliation(s)
- Eun Yu Kim
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Zhen Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Wenwen Fan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Jungnam Cho
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Shanghai, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
11
|
The Chloroplastic Small Heat Shock Protein Gene KvHSP26 Is Induced by Various Abiotic Stresses in Kosteletzkya virginica. Int J Genomics 2021; 2021:6652445. [PMID: 33623779 PMCID: PMC7875624 DOI: 10.1155/2021/6652445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/15/2021] [Indexed: 01/16/2023] Open
Abstract
Small heat shock proteins (sHSPs) are a group of chaperone proteins existed in all organisms. The functions of sHSPs in heat and abiotic stress responses in many glycophyte plants have been studied. However, their possible roles in halophyte plants are still largely known. In this work, a putative sHSP gene KvHSP26 was cloned from K. virginica. Bioinformatics analyses revealed that KvHSP26 encoded a chloroplastic protein with the typical features of sHSPs. Amino acid sequence alignment and phylogenetic analysis demonstrated that KvHSP26 shared 30%-77% homology with other sHSPs from Arabidopsis, cotton, durian, salvia, and soybean. Quantitative real-time PCR (qPCR) assays exhibited that KvHSP26 was constitutively expressed in different tissues such as leaves, stems, and roots, with a relatively higher expression in leaves. Furthermore, expression of KvHSP26 was strongly induced by salt, heat, osmotic stress, and ABA in K. virginica. All these results suggest that KvHSP26 encodes a new sHSP, which is involved in multiple abiotic stress responses in K. virginica, and it has a great potential to be used as a candidate gene for the breeding of plants with improved tolerances to various abiotic stresses.
Collapse
|
12
|
Jia H, Wang X, Shi Y, Wu X, Wang Y, Liu J, Fang Z, Li C, Dong K. Overexpression of Medicago sativa LEA4-4 can improve the salt, drought, and oxidation resistance of transgenic Arabidopsis. PLoS One 2020; 15:e0234085. [PMID: 32497140 PMCID: PMC7272090 DOI: 10.1371/journal.pone.0234085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are widely involved in many adverse conditions among plants. In this study, we isolated a LEA4 gene from alfalfa (Medicago sativa L.) termed MsLEA4-4 via a homology cloning strategy. MsLEA4-4 encodes 166 amino acids, and the structural analysis showed that the gene contained five repeating TAQAAKEKTQQ amino acid motifs. There were a large number of α-helix in MsLEA4-4, and belongs to hydrophilic amino acid. Subcellular localization analysis showed that MsLEA4-4 was localized in the nucleus. The MsLEA4-4 promoter consisted of G-box and A-box elements, abscisic acid-responsive elements (ABREs), photo regulation and photoperiodic-controlling cis-acting elements, and endosperm expression motifs. The MsLEA4-4 overexpressing in Arabidopsis conferred late-germination phenotypes. Resistance of the overexpressed plants to abiotic stress significantly outperformed the wild-type (WT) plants. Under salt stress and abscisic acid treatment, with more lateral roots and higher chlorophyll content, the overexpressed plants has a higher survival rate measured against WT. Compared to those in the WT plants, the levels of soluble sugar and the activity of various antioxidant enzymes were elevated in the overexpressed plants, whereas the levels of proline and malondialdehyde were significantly reduced. The expression levels of several genes such as ABF3, ABI5, NCED5, and NCED9 increased markedly in the overexpressed plants compared to the WT under osmotic stress.
Collapse
Affiliation(s)
- Huili Jia
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
- Animal Husbandry and Veterinary Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Xuemin Wang
- Chinese Academy of Agricultural Sciences, Institute of Animal Science, Beijing, China
| | - Yonghong Shi
- Animal Husbandry and Veterinary Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Xinming Wu
- Animal Husbandry and Veterinary Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Yunqi Wang
- Animal Husbandry and Veterinary Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Jianning Liu
- Animal Husbandry and Veterinary Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Zhihong Fang
- Animal Husbandry and Veterinary Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Chunyan Li
- Animal Husbandry and Veterinary Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Kuanhu Dong
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
13
|
Kumari P, Rastogi A, Yadav S. Effects of Heat stress and molecular mitigation approaches in orphan legume, Chickpea. Mol Biol Rep 2020; 47:4659-4670. [PMID: 32133603 DOI: 10.1007/s11033-020-05358-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/27/2020] [Indexed: 11/28/2022]
Abstract
Global warming has an adverse impact on agriculture and food security is in doldrums around the world. A sharp increase in the temperature of earth is expected and may lead to ~ 1.8-4 °C rise in average earth temperature by the year 2100. Thus, heat stress is a critical factor for plant growth development and crop yield. Chickpea, which is an important leguminous crop and rich source of proteins is also a heat sensitive crop but high temperature exceeding 35 °C inhibit its productivity. Climate-smart agriculture seems to be a plausible approach to minimize the drastic effect of climate change on plant's adaptation. This may help in better selection of tolerant cultivars of chickpea that can be used in breeding programmes for heat stress tolerance in chickpea. Also the biotechnological approaches using candidate genes expressed in transgenics plants may play pivotal role in the production of climate resilient chickpea plants. Some preliminary findings using CAP2, Galactinol synthase genes, proteomic approaches, RNA seq data, stay green traits and -OMICS in general, have proved to be promising. A close collaboration between agronomists, plant physiologists, geneticists, biotechnologists is the pressing need and must be envisioned in order to address heat stress tolerance in chickpea under the prevailing climatic conditions and continuously increasing temperature. In the context of global heat stress and climate change, adaptation and mitigation are the keywords for employing transdisciplinary methodologies with respect to plant growth, development and agronomy.
Collapse
Affiliation(s)
- Pragati Kumari
- Department of Life Science, Singhania University, Jhunjhunu, Rajasthan, 333515, India. .,Scientist Hostel-S-02, Chauras campus, Srinagar Garhwal, Uttarakhand, 246174, India.
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Science, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznań, Poland
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University,, Srinagar Garhwal, Uttarakhand, 246174, India.
| |
Collapse
|
14
|
Ali M, Muhammad I, ul Haq S, Alam M, Khattak AM, Akhtar K, Ullah H, Khan A, Lu G, Gong ZH. The CaChiVI2 Gene of Capsicum annuum L. Confers Resistance Against Heat Stress and Infection of Phytophthora capsici. FRONTIERS IN PLANT SCIENCE 2020; 11:219. [PMID: 32174952 PMCID: PMC7057250 DOI: 10.3389/fpls.2020.00219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/12/2020] [Indexed: 05/08/2023]
Abstract
Extreme environmental conditions seriously affect crop growth and development, resulting in substantial reduction in yield and quality. However, chitin-binding proteins (CBP) family member CaChiVI2 plays a crucial role in eliminating the impact of adverse environmental conditions, such as cold and salt stress. Here, for the first time it was discovered that CaChiVI2 (Capana08g001237) gene of pepper (Capsicum annuum L.) had a role in resistance to heat stress and physiological processes. The full-length open-reading frame (ORF) of CaChiVI2 (606-bp, encoding 201-amino acids), was cloned into TRV2:CaChiVI2 vector for silencing. The CaChiVI2 gene carries heat shock elements (HSE, AAAAAATTTC) in the upstream region, and thereby shows sensitivity to heat stress at the transcriptional level. The silencing effect of CaChiVI2 in pepper resulted in increased susceptibility to heat and Phytophthora capsici infection. This was evident from the severe symptoms on leaves, the increase in superoxide (O2 -) and hydrogen peroxide (H2O2) accumulation, higher malondialdehyde (MDA), relative electrolyte leakage (REL) and lower proline contents compared with control plants. Furthermore, the transcript level of other resistance responsive genes was also altered. In addition, the CaChiIV2-overexpression in Arabidopsis thaliana showed mild heat and drought stress symptoms and increased transcript level of a defense-related gene (AtHSA32), indicating its role in the co-regulation network of the plant. The CaChiVI2-overexpressed plants also showed a decrease in MDA contents and an increase in antioxidant enzyme activity and proline accumulation. In conclusion, the results suggest that CaChiVI2 gene plays a decisive role in heat and drought stress tolerance, as well as, provides resistance against P. capsici by reducing the accumulation of reactive oxygen species (ROS) and modulating the expression of defense-related genes. The outcomes obtained here suggest that further studies should be conducted on plants adaptation mechanisms in variable environments.
Collapse
Affiliation(s)
- Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, China
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Izhar Muhammad
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Mukhtar Alam
- Department of Agriculture, The University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Mateen Khattak
- Department of Horticulture, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Kashif Akhtar
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hidayat Ullah
- Department of Agriculture, The University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Gang Lu
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
Abassi S, Wang H, Ponmani T, Ki JS. Small heat shock protein genes of the green algae Closterium ehrenbergii: Cloning and differential expression under heat and heavy metal stresses. ENVIRONMENTAL TOXICOLOGY 2019; 34:1013-1024. [PMID: 31095847 DOI: 10.1002/tox.22772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
The freshwater green algae Closterium ehrenbergii has been considered as a model for eco-toxicological assessment in aquatic systems. Heat shock proteins (HSPs) are a class of highly conserved proteins produced in all living organisms, which participate in environmental stress responses. In the present study, we determined the cDNA sequences of small heat shock protein 10 (sHSP10) and sHSP17.1 from C. ehrenbergii, and examined the physiological changes and transcriptional responses of the genes after exposure to thermal shock and toxicants treatments. The open reading frame (ORF) of CeHSP10 was 300 bp long, encoding 99 amino acid (aa) residues (10.53 kDa) with a GroES chaperonin conserved site of 22 aa. The CeHSP17.1 had a 468 bp ORF, encoding 155 aa with a conserved C-terminal α-crystallin domain. For heat stress, cells presented pigment loss and possible chloroplast damage, with an up-regulation in the expression of both sHSP10 and sHSP17.1 genes. As for the heavy metal stressors, an increase in the production of reactive oxygen species was registered in a dose dependent manner, with a significant up-regulation of both sHSP10 and sHSP17.1 genes. These results suggest that sHSP genes in C. ehrenbergii may play a role in responses to stress environments, and they could be used as an early detection parameter as biomarker genes in molecular toxicity assessments.
Collapse
Affiliation(s)
- Sofia Abassi
- Department of Biotechnology, Sangmyung University, Seoul, South Korea
| | - Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul, South Korea
| | - Thangaraj Ponmani
- Department of Biotechnology, Sangmyung University, Seoul, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, South Korea
| |
Collapse
|
16
|
Feng XH, Zhang HX, Ali M, Gai WX, Cheng GX, Yu QH, Yang SB, Li XX, Gong ZH. A small heat shock protein CaHsp25.9 positively regulates heat, salt, and drought stress tolerance in pepper (Capsicum annuum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:151-162. [PMID: 31284139 DOI: 10.1016/j.plaphy.2019.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/22/2019] [Accepted: 07/01/2019] [Indexed: 05/21/2023]
Abstract
Extreme environmental conditions seriously affect crop growth and development, resulting in a decrease in crop yield and quality. However, small heat shock proteins (Hsp20s) play an important role in helping plants to avoid these negative impacts. In this study, we identified the expression pattern of the CaHsp25.9 gene in a thermo-tolerance pepper line R9 and thermo-sensitive line B6. The transcription of CaHsp25.9 was strongly induced by heat stress in both R9 and B6. The expression of CaHsp25.9 was induced by salt and drought stress in R9. Additionally, the CaHsp25.9 protein was localized in the cell membrane and cytoplasm. When silencing the CaHsp25.9 gene in the R9 line, the accumulation of malonaldehyde (MDA), relative electrolytic leakage, hydrogen peroxide, superoxide anion were increased, while total chlorophyll decreased under heat, salt, and drought stress. Over-expression of CaHsp25.9 in Arabidopsis resulted in decreased MDA, while proline, superoxide dismutase activity, germination, and root length increased under heat, salt, and drought stress. However, peroxidase activity was higher in drought stress but lower in heat and salt stress in transgenic Arabidopsis compared to the wild type (WT). Furthermore, the transcription of stress related genes was more highly induced in transgenic lines than WT. Our results indicated that CaHsp25.9 confers heat, salt, and drought stress tolerance to plants by reducing the accumulation of reactive oxygen species, enhancing the activity of antioxidant enzymes, and regulating the expression of stress-related genes. Therefore, these results may provide insight into plant adaption mechanisms developed in variable environments.
Collapse
Affiliation(s)
- Xiao-Hui Feng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Guo-Xin Cheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Qing-Hui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China
| | - Sheng-Bao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China
| | - Xi-Xuan Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
17
|
Sewelam N, Kazan K, Hüdig M, Maurino VG, Schenk PM. The AtHSP17.4C1 Gene Expression Is Mediated by Diverse Signals that Link Biotic and Abiotic Stress Factors with ROS and Can Be a Useful Molecular Marker for Oxidative Stress. Int J Mol Sci 2019; 20:E3201. [PMID: 31261879 PMCID: PMC6650836 DOI: 10.3390/ijms20133201] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 11/23/2022] Open
Abstract
Reactive oxygen species (ROS) are highly controlled signaling species that are involved in regulating gene expression in response to different environmental cues. The production of heat shock proteins (HSPs) is a key strategy that plants use to defend themselves against diverse stresses, including oxidative stress. In this study, expression patterns of the Arabidopsis HSP17.4CI gene, a cytosolic class I small HSP, were systematically profiled under different abiotic, biotic and oxidative stresses. Our data show that HSP17.4CI was early and highly induced by heat, cold, salt, drought and high-light. HSP17.4CI also showed high expression levels in Arabidopsis plants infected with the biotrophic pathogen Pseudomonas syringae, but not in response to the necrotrophic pathogens Alternaria brassicicola and Fusarium oxysporum. Oxidative stress treatments including H2O2 and the herbicide methyl viologen led to induction of HSP17.4CI. The plant hormones abscisic acid (ABA) and salicylic acid (SA) induced the expression of HSP17.4CI, whereas methyl jasmonate (MJ) did not affect the expression level of this gene. Furthermore, we found enhanced expression of HSP17.4CI in catalase mutant plants, which are deficient in catalase 2 activity and accumulate intracellular H2O2. Taken together, data presented here suggest that HSP17.4CI expression is regulated by various signals that connect biotic and abiotic stresses with ROS and can be used as a molecular marker for oxidative stress.
Collapse
Affiliation(s)
- Nasser Sewelam
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf 40225, Germany.
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture, Queensland Bioscience Precinct, St Lucia, Queensland 4067, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Meike Hüdig
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf 40225, Germany
| | - Veronica G Maurino
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf 40225, Germany
| | - Peer M Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
18
|
Huang LJ, Cheng GX, Khan A, Wei AM, Yu QH, Yang SB, Luo DX, Gong ZH. CaHSP16.4, a small heat shock protein gene in pepper, is involved in heat and drought tolerance. PROTOPLASMA 2019; 256:39-51. [PMID: 29946904 DOI: 10.1007/s00709-018-1280-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/18/2018] [Indexed: 05/08/2023]
Abstract
Environmental stress affects growth and development of crops, and reduces yield and quality of crops. To cope with environmental stressors, plants have sophisticated defense mechanisms, including the HSF/HSP pathway. Here, we identify the expression pattern of CaHSP16.4 in thermo-tolerant and thermo-sensitive pepper (Capsicum annuum L.) lines. Under heat stress, R9 thermo-tolerant line had higher CaHSP16.4 expression level than the B6 thermo-sensitive line. Under drought stress, expression pattern of CaHSP16.4 was dynamic. Initially, CaHSP16.4 was downregulated then CaHSP16.4 significantly increased. Subcellular localization assay showed that CaHSP16.4 localizes in cytoplasm and nucleus. In the R9 line, silencing of CaHSP16.4 resulted in a significant increase in malonaldehyde content and a significant reduction in total chlorophyll content, suggesting that silencing of CaHSP16.4 reduces heat and drought stresses tolerance. Overexpression of CaHSP16.4 enhances tolerance to heat stress in Arabidopsis. Under heat stress, the survival rate of CaHSP16.4 overexpression lines was significantly higher than wild type. Furthermore, under heat, drought, and combined stress conditions, the CaHSP16.4-overexpression lines had lower relative electrolytic leakage and malonaldehyde content, higher total chlorophyll content, and higher activity levels of superoxide dismutase, catalase, ascorbic acid peroxidase, and glutathione peroxidase compared to wild type. Furthermore, the expression levels of the stress response genes in the overexpression lines were higher than the wild type. These results indicate that the overexpression of CaHSP16.4 enhances the ability of reactive oxygen species scavenging under heat and drought stress.
Collapse
Affiliation(s)
- Liu-Jun Huang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Guo-Xin Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, People's Republic of China
| | - Qing-Hui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - Sheng-Bao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - De-Xu Luo
- Xuhuai Region Huaiyin Institute of Agricultural Sciences, Huai'an, 223001, Jiangsu, People's Republic of China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
19
|
Hantke I, Schäfer H, Janczikowski A, Turgay K. YocM a small heat shock protein can protect Bacillus subtilis cells during salt stress. Mol Microbiol 2018; 111:423-440. [PMID: 30431188 DOI: 10.1111/mmi.14164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2018] [Indexed: 12/17/2022]
Abstract
Small heat shock proteins (sHsp) occur in all domains of life. By interacting with misfolded or aggregated proteins these chaperones fulfill a protective role in cellular protein homeostasis. Here, we demonstrate that the sHsp YocM of the Gram-positive model organism Bacillus subtilis is part of the cellular protein quality control system with a specific role in salt stress response. In the absence of YocM the survival of salt shocked cells is impaired, and increased levels of YocM protect B. subtilis exposed to heat or salt. We observed a salt and heat stress-induced localization of YocM to intracellular protein aggregates. Interestingly, purified YocM appears to accelerate protein aggregation of different model substrates in vitro. In addition, the combined presence of YocM and chemical chaperones, which accumulate in salt stressed cells, can facilitate in vitro a synergistic protective effect on protein misfolding. Therefore, the beneficial role of YocM during salt stress could be related to a mutual functional relationship with chemical chaperones and adds a new possible functional aspect to sHsp chaperone activities.
Collapse
Affiliation(s)
- Ingo Hantke
- Institut für Mikrobiologie der Universität Hannover, Leibniz-Universität Hannover, Hannover, Germany
| | - Heinrich Schäfer
- Institut für Mikrobiologie der Universität Hannover, Leibniz-Universität Hannover, Hannover, Germany
| | - Armgard Janczikowski
- Institut für Mikrobiologie der Universität Hannover, Leibniz-Universität Hannover, Hannover, Germany
| | - Kürşad Turgay
- Institut für Mikrobiologie der Universität Hannover, Leibniz-Universität Hannover, Hannover, Germany
| |
Collapse
|
20
|
Zhang J, Li Q, Sun Y, Tian J, Hu Z, Zhu B, Liu C. Molecular cloning and functional analysis of small heat shock protein 19.1 gene from the Chinese oak silkworm, Antheraea pernyi. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21516. [PMID: 30387888 DOI: 10.1002/arch.21516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Small heat shock proteins (sHSPs) are a class of highly conserved proteins that are ubiquitously found in all types of organisms, from prokaryotes to eukaryotes. In the current study, we identified and characterized the full-length cDNA encoding sHSP 19.1 from the oak silkworm, Antheraea pernyi. Ap-sHSP is 510 bp in length, and encodes a protein of 169 amino acid residues. The protein contains conserved domains found in insect sHSPs, and it belongs to the α-crystallin-HSPs_p23-like superfamily. Recombinant Ap-sHSP was expressed in Escherichia coli cells, and a rabbit anti-Ap-sHSP 19.1 antibody was generated to confirm the biological functions of Ap-sHSP 19.1 in A. pernyi. Real-time polymerase chain reaction and western blot analysis revealed that Ap-sHSP 19.1 expression was highest in the fat body, followed by the midgut, and the lowest expression was found in the Malpighian tubule. Ap-sHSP 19.1 transcript expression was significantly induced following challenge with microbial pathogens. In addition, the expression of Ap-sHSP 19.1 was strongly induced after heat shock. These results suggest that Ap-sHSP 19.1 plays a crucial role in immune responses and thermal tolerance in A. pernyi.
Collapse
Affiliation(s)
- Jiawei Zhang
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qingqing Li
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yu Sun
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jiwu Tian
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zaijin Hu
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Baojian Zhu
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Chaoliang Liu
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
21
|
Capstaff NM, Miller AJ. Improving the Yield and Nutritional Quality of Forage Crops. FRONTIERS IN PLANT SCIENCE 2018; 9:535. [PMID: 29740468 PMCID: PMC5928394 DOI: 10.3389/fpls.2018.00535] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/06/2018] [Indexed: 05/02/2023]
Abstract
Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability.
Collapse
|
22
|
Guo Z, Liang Y, Yan J, Yang E, Li K, Xu H. Physiological response and transcription profiling analysis reveals the role of H 2S in alleviating excess nitrate stress tolerance in tomato roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 124:59-69. [PMID: 29348067 DOI: 10.1016/j.plaphy.2018.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 05/26/2023]
Abstract
Soil secondary salinization caused by excess nitrate addition is one of the major obstacles in greenhouse vegetable production. Excess nitrate inhibited the growth of tomato plants, while application of 100 μM H2S donor NaHS efficiently increased the plant height, fresh and dry weight of shoot and root, root length, endogenous H2S contents and L-cysteine desulfhydrases activities. NaHS altered the oxidative status of nitrate-stressed plants as inferred by changes in reactive oxygen species (ROS) accumulation and lipid peroxidation accompanied by regulation of the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX). Besides, NaHS increased the nitric oxide (NO) and total S-nitrosothiols (SNOs) contents, nitrate reductase (NR) activities and decreased the S-nitrosoglutathione reductase (GSNOR) activities under nitrate stress. Furthermore, microarray analysis using the Affymetrix Tomato GeneChip showed that 5349 transcripts were up-regulated and 5536 transcripts were down-regulated under NaHS and excess nitrate stress treatment, compared to the excess nitrate stress alone. The differentially expressed genes (log2 fold change >2 or < -2) of up-regulated (213) and down-regulated (271) genes identified were functionally annotated and subsequently classified into 9 functional categories. These categories included metabolism, signal transduction, defence response, transcription factor, protein synthesis and protein fate, transporter, cell wall related, hormone response, cell death, energy and unknown proteins. Our study suggested exogenous NaHS might enhance excess nitrate stress tolerance of tomato plants by modulating ROS and reactive nitrogen species (RNS) signaling and downstream transcriptional adjustment, such as defence response, signal transduction and transcription factors.
Collapse
Affiliation(s)
- Zhaolai Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, PR China
| | - Yuanlin Liang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, PR China
| | - Jinping Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, PR China
| | - En Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, PR China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, PR China
| | - Huini Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, PR China.
| |
Collapse
|
23
|
Muthusamy SK, Dalal M, Chinnusamy V, Bansal KC. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:100-113. [PMID: 28178571 DOI: 10.1016/j.jplph.2017.01.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 05/23/2023]
Abstract
Small Heat Shock Proteins (sHSPs)/HSP20 are molecular chaperones that protect plants by preventing protein aggregation during abiotic stress conditions, especially heat stress. Due to global climate change, high temperature is emerging as a major threat to wheat productivity. Thus, the identification of HSP20 and analysis of HSP transcriptional regulation under different abiotic stresses in wheat would help in understanding the role of these proteins in abiotic stress tolerance. We used sequences of known rice and Arabidopsis HSP20 HMM profiles as queries against publicly available wheat genome and wheat full length cDNA databases (TriFLDB) to identify the respective orthologues from wheat. 163 TaHSP20 (including 109 sHSP and 54 ACD) genes were identified and classified according to the sub-cellular localization and phylogenetic relationship with sequenced grass genomes (Oryza sativa, Sorghum bicolor, Zea mays, Brachypodium distachyon and Setaria italica). Spatio-temporal, biotic and abiotic stress-specific expression patterns in normalized RNA seq and wheat array datasets revealed constitutive as well as inductive responses of HSP20 in different tissues and developmental stages of wheat. Promoter analysis of TaHSP20 genes showed the presence of tissue-specific, biotic, abiotic, light-responsive, circadian and cell cycle-responsive cis-regulatory elements. 14 TaHSP20 family genes were under the regulation of 8 TamiRNA genes. The expression levels of twelve HSP20 genes were studied under abiotic stress conditions in the drought- and heat-tolerant wheat genotype C306. Of the 13 TaHSP20 genes, TaHSP16.9H-CI showed high constitutive expression with upregulation only under salt stress. Both heat and salt stresses upregulated the expression of TaHSP17.4-CI, TaHSP17.7A-CI, TaHSP19.1-CIII, TaACD20.0B-CII and TaACD20.6C-CIV, while TaHSP23.7-MTI was specifically induced only under heat stress. Our results showed that the identified TaHSP20 genes play an important role under different abiotic stress conditions. Thus, the results illustrate the complexity of the TaHSP20 gene family and its stress regulation in wheat, and suggest that sHSPs as attractive breeding targets for improvement of the heat tolerance of wheat.
Collapse
Affiliation(s)
- Senthilkumar K Muthusamy
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India; Division of Crop Improvement, ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Monika Dalal
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Kailash C Bansal
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|