1
|
Popescu (Stegarus) DI, Oprita (Cioara) CM, Tamaian R, Niculescu VC. Consumer Safety and Pesticide Residues: Evaluating Mitigation Protocols for Greengrocery. J Xenobiot 2024; 14:1638-1669. [PMID: 39584953 PMCID: PMC11587004 DOI: 10.3390/jox14040088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/04/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
The application of pesticides remains a necessary measure for pest management in agriculture, particularly in the cultivation of fruits and vegetables. After harvest, the presence of pesticide residues in greengrocery (fruits and vegetables) is significantly influenced by various factors, including storage conditions, handling practices, and subsequent processing methods. The mitigation of these residues to levels compliant with regulated maximum thresholds ensures the safety of raw and processed fruits and vegetables for consumption. A contemporary survey of pesticide residues in greengrocery has gathered considerable attention from consumers, driven by concerns over the potential health risk of pesticide exposure. Consequently, consumers want to be extensively informed about household processing techniques to minimize associated risks. Meanwhile, a critical question arises: does household processing effectively eliminate pesticide residues? A comprehensive review of the literature reveals that conventional methods, such as washing and soaking, offer only limited reduction in residue levels, while emerging treatments, suitable both at household and industrial scale, demonstrate increased efficiency in residues mitigation. This study aims to emphasise the ubiquitous use of pesticides in crop cultivation while providing recommendations for the implementation of efficient treatment protocols to address residue concerns. Following upon available evidence and database mining, the worldwide purpose must be to outline agriculturally and economically viable strategies that prioritize both the health and safety of consumers, as well as the green cultivation and processing of fruits and vegetables.
Collapse
Affiliation(s)
- Diana Ionela Popescu (Stegarus)
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, P.O. Box Raureni 7, 240050 Ramnicu Valcea, Romania; (D.I.P.)
| | - Corina Mihaela Oprita (Cioara)
- Doctoral School of Applied Sciences, Ovidius University Constanta, 124 Mamaia Blvd, 1st University Alley, 900470 Constanta, Romania
| | - Radu Tamaian
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, P.O. Box Raureni 7, 240050 Ramnicu Valcea, Romania; (D.I.P.)
| | - Violeta-Carolina Niculescu
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, P.O. Box Raureni 7, 240050 Ramnicu Valcea, Romania; (D.I.P.)
| |
Collapse
|
2
|
Gupta A, Yadav K, Yadav A, Ahmad R, Srivastava A, Kumar D, Khan MA, Dwivedi UN. Mannose-specific plant and microbial lectins as antiviral agents: A review. Glycoconj J 2024; 41:1-33. [PMID: 38244136 DOI: 10.1007/s10719-023-10142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Lectins are non-immunological carbohydrate-binding proteins classified on the basis of their structure, origin, and sugar specificity. The binding specificity of such proteins with the surface glycan moiety determines their activity and clinical applications. Thus, lectins hold great potential as diagnostic and drug discovery agents and as novel biopharmaceutical products. In recent years, significant advancements have been made in understanding plant and microbial lectins as therapeutic agents against various viral diseases. Among them, mannose-specific lectins have being proven as promising antiviral agents against a variety of viruses, such as HIV, Influenza, Herpes, Ebola, Hepatitis, Severe Acute Respiratory Syndrome Coronavirus-1 (SARS-CoV-1), Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) and most recent Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The binding of mannose-binding lectins (MBLs) from plants and microbes to high-mannose containing N-glycans (which may be simple or complex) of glycoproteins found on the surface of viruses has been found to be highly specific and mainly responsible for their antiviral activity. MBLs target various steps in the viral life cycle, including viral attachment, entry and replication. The present review discusses the brief classification and structure of lectins along with antiviral activity of various mannose-specific lectins from plants and microbial sources and their diagnostic and therapeutic applications against viral diseases.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India.
| | - Anurag Yadav
- Department of Microbiology, C.P. College of Agriculture, Sardarkrushinagar Dantiwada Agriculture University, District-Banaskantha, Gujarat, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India.
| | - Aditi Srivastava
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Dileep Kumar
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Khwaja Moinuddin Chishti Language University, Lucknow, Uttar Pradesh, India
| | - Mohammad Amir Khan
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - U N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Nabi-Afjadi M, Heydari M, Zalpoor H, Arman I, Sadoughi A, Sahami P, Aghazadeh S. Lectins and lectibodies: potential promising antiviral agents. Cell Mol Biol Lett 2022; 27:37. [PMID: 35562647 PMCID: PMC9100318 DOI: 10.1186/s11658-022-00338-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022] Open
Abstract
In nature, lectins are widely dispersed proteins that selectively recognize and bind to carbohydrates and glycoconjugates via reversible bonds at specific binding sites. Many viral diseases have been treated with lectins due to their wide range of structures, specificity for carbohydrates, and ability to bind carbohydrates. Through hemagglutination assays, these proteins can be detected interacting with various carbohydrates on the surface of cells and viral envelopes. This review discusses the most robust lectins and their rationally engineered versions, such as lectibodies, as antiviral proteins. Fusion of lectin and antibody’s crystallizable fragment (Fc) of immunoglobulin G (IgG) produces a molecule called a “lectibody” that can act as a carbohydrate-targeting antibody. Lectibodies can not only bind to the surface glycoproteins via their lectins and neutralize and clear viruses or infected cells by viruses but also perform Fc-mediated antibody effector functions. These functions include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), and antibody-dependent cell-mediated phagocytosis (ADCP). In addition to entering host cells, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein S1 binds to angiotensin-converting enzyme 2 (ACE2) and downregulates it and type I interferons in a way that may lead to lung disease. The SARS-CoV-2 spike protein S1 and human immunodeficiency virus (HIV) envelope are heavily glycosylated, which could make them a major target for developing vaccines, diagnostic tests, and therapeutic drugs. Lectibodies can lead to neutralization and clearance of viruses and cells infected by viruses by binding to glycans located on the envelope surface (e.g., the heavily glycosylated SARS-CoV-2 spike protein).
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Morteza Heydari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,American Association of Kidney Patients, Tampa, FL, USA
| | - Ibrahim Arman
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Arezoo Sadoughi
- Department of Immunology, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parisa Sahami
- Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Safiyeh Aghazadeh
- Division of Biochemistry, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, 5756151818, Iran.
| |
Collapse
|
4
|
Ahirwar A, Kesharwani K, Deka R, Muthukumar S, Khan MJ, Rai A, Vinayak V, Varjani S, Joshi KB, Morjaria S. Microalgal drugs: A promising therapeutic reserve for the future. J Biotechnol 2022; 349:32-46. [PMID: 35339574 DOI: 10.1016/j.jbiotec.2022.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/17/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
Over the decades, a variety of chemically synthesized drugs are being used to cure existing diseases but often these drugs could not be effectively employed for the treatment of serious and newly emerging diseases. Fortunately, in nature there occurs immense treasure of plants and microorganisms which are living jewels with respect to their richness of medically important metabolites of high value. Hence, amongst the existing microorganism(s), the marine world offers a plethora of biological entities that can contribute to alleviate numerous human ailments. Algae are one such photosynthetic microorganism found in both marine as well as fresh water which are rich source of metabolites known for their nutrient content and health benefits. Various algal species like Haematococcus, Diatoms, Griffithsia, Chlorella, Spirulina, Ulva, etc. have been identified and isolated to produce biologically active and pharmaceutically important high value compounds like astaxanthin, fucoxanthin, sulphur polysaccharides mainly galactose, rhamnose, xylose, fucose etc., which show antimicrobial, antifungal, anti-cancer, and antiviral activities. However, the production of either of these bio compounds is favored under conditions of stress. This review gives detailed information on various nutraceutical metabolites extracted from algae. Additionally focus has been made on the role of these bio compounds extracted from algae especially sulphur polysaccharides to treat several diseases with prospective treatment for SARS-CoV-2. Lastly it covers the knowledge gaps and future perspectives in this area of research.
Collapse
Affiliation(s)
- Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Khushboo Kesharwani
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Rahul Deka
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Shreya Muthukumar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Anshuman Rai
- MMU, Deemed University, School of Engineering, Department of Biotechnology, Ambala, Haryana, 133203, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Shruti Morjaria
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| |
Collapse
|
5
|
Carbone DA, Pellone P, Lubritto C, Ciniglia C. Evaluation of Microalgae Antiviral Activity and Their Bioactive Compounds. Antibiotics (Basel) 2021; 10:746. [PMID: 34202941 PMCID: PMC8234452 DOI: 10.3390/antibiotics10060746] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
During the last year, science has been focusing on the research of antivirally active compounds overall after the SARS-CoV-2 pandemic, which caused a great amount of deaths and the downfall of the economy in 2020. Photosynthetic organisms such as microalgae are known to be a reservoir of bioactive secondary metabolites; this feature, coupled with the possibility of achieving very high biomass levels without excessive energetic expenses, make microalgae worthy of attention in the search for new molecules with antiviral effects. In this work, the antiviral effects of microalgae against some common human or animal viruses were considered, focusing our attention on some possible effects against SARS-CoV-2. We summed up the data from the literature on microalgae antiviral compounds, from the most common ones, such as lectins, polysaccharides and photosynthetic pigments, to the less known ones, such as unidentified proteins. We have discussed the effects of a microalgae-based genetic engineering approach against some viral diseases. We have illustrated the potential antiviral benefits of a diet enriched in microalgae.
Collapse
Affiliation(s)
- Dora Allegra Carbone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (C.L.); (C.C.)
| | - Paola Pellone
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Carmine Lubritto
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (C.L.); (C.C.)
- National Institute of Nuclear Physics, Complesso Universitario di Monte S, 80126 Naples, Italy
| | - Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (C.L.); (C.C.)
| |
Collapse
|
6
|
Antiviral Cyanometabolites-A Review. Biomolecules 2021; 11:biom11030474. [PMID: 33810129 PMCID: PMC8004682 DOI: 10.3390/biom11030474] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022] Open
Abstract
Global processes, such as climate change, frequent and distant travelling and population growth, increase the risk of viral infection spread. Unfortunately, the number of effective and accessible medicines for the prevention and treatment of these infections is limited. Therefore, in recent years, efforts have been intensified to develop new antiviral medicines or vaccines. In this review article, the structure and activity of the most promising antiviral cyanobacterial products are presented. The antiviral cyanometabolites are mainly active against the human immunodeficiency virus (HIV) and other enveloped viruses such as herpes simplex virus (HSV), Ebola or the influenza viruses. The majority of the metabolites are classified as lectins, monomeric or dimeric proteins with unique amino acid sequences. They all show activity at the nanomolar range but differ in carbohydrate specificity and recognize a different epitope on high mannose oligosaccharides. The cyanobacterial lectins include cyanovirin-N (CV-N), scytovirin (SVN), microvirin (MVN), Microcystisviridis lectin (MVL), and Oscillatoria agardhii agglutinin (OAA). Cyanobacterial polysaccharides, peptides, and other metabolites also have potential to be used as antiviral drugs. The sulfated polysaccharide, calcium spirulan (CA-SP), inhibited infection by enveloped viruses, stimulated the immune system’s response, and showed antitumor activity. Microginins, the linear peptides, inhibit angiotensin-converting enzyme (ACE), therefore, their use in the treatment of COVID-19 patients with injury of the ACE2 expressing organs is considered. In addition, many cyanobacterial extracts were revealed to have antiviral activities, but the active agents have not been identified. This fact provides a good basis for further studies on the therapeutic potential of these microorganisms.
Collapse
|
7
|
de Oliveira DT, da Costa AAF, Costa FF, da Rocha Filho GN, do Nascimento LAS. Advances in the Biotechnological Potential of Brazilian Marine Microalgae and Cyanobacteria. Molecules 2020; 25:molecules25122908. [PMID: 32599827 PMCID: PMC7356545 DOI: 10.3390/molecules25122908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022] Open
Abstract
Due the worldwide need to improve care for the environment and people, there is a great demand for the development of new renewable, sustainable, and less polluting technologies for food, health, and environmental industries. The marine environment is one of the main areas investigated in the search for alternatives to the raw materials currently used. Thereby, cyanobacteria and marine microalgae are microorganisms that are capable of producing a diverse range of metabolites useful for their cellular maintenance, but that also represent a great biotechnological potential. Due its great potential, they have an enormous appeal in the scientific research where, the biological activity of metabolites produced by these microorganisms, such as the antioxidant action of sterols are, some examples of biotechnological applications investigated around the world. Thereby, Brazil due to its extensive biodiversity, has high potential as a raw material supplier of marine waters, researching cyanobacteria and microalgae metabolites and their applications. Thus, this rapid review intends to present some important contributions and advances from Brazilian researchers, using the biomass of Brazilian cyanobacteria and marine microalgae, in order to illustrate the value of what has already been discovered and the enormous potential of what remains unexplored so far.
Collapse
Affiliation(s)
- Deborah Terra de Oliveira
- Institute of Biological Sciences, Graduation Program in Biotechnology, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil
- Laboratory of Oils of the Amazon, Universidade Federal do Pará, Perimetral Avenue, Guamá, Belém, PA 66075-750, Brazil; (A.A.F.d.C.); (G.N.d.R.F.)
- Correspondence: (D.T.d.O.); (L.A.S.d.N.); Tel.: +55-919-8171-4947
| | - Ana Alice Farias da Costa
- Laboratory of Oils of the Amazon, Universidade Federal do Pará, Perimetral Avenue, Guamá, Belém, PA 66075-750, Brazil; (A.A.F.d.C.); (G.N.d.R.F.)
- Institute of Exact and Natural Sciences, Graduation Program in Chemistry, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil
| | - Fabíola Fernandes Costa
- Campus of Salinópolis, Universidade Federal do Pará, Salinópolis, Pará, CEP 68721-000, Brazil;
| | - Geraldo Narciso da Rocha Filho
- Laboratory of Oils of the Amazon, Universidade Federal do Pará, Perimetral Avenue, Guamá, Belém, PA 66075-750, Brazil; (A.A.F.d.C.); (G.N.d.R.F.)
- Institute of Exact and Natural Sciences, Graduation Program in Chemistry, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil
| | - Luís Adriano Santos do Nascimento
- Institute of Biological Sciences, Graduation Program in Biotechnology, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil
- Laboratory of Oils of the Amazon, Universidade Federal do Pará, Perimetral Avenue, Guamá, Belém, PA 66075-750, Brazil; (A.A.F.d.C.); (G.N.d.R.F.)
- Institute of Exact and Natural Sciences, Graduation Program in Chemistry, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil
- Correspondence: (D.T.d.O.); (L.A.S.d.N.); Tel.: +55-919-8171-4947
| |
Collapse
|