1
|
Coulter T, Hill C, McKnight AJ. Insights into the length and breadth of methodologies harnessed to study human telomeres. Biomark Res 2024; 12:127. [PMID: 39438947 PMCID: PMC11515763 DOI: 10.1186/s40364-024-00668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Telomeres are protective structures at the end of eukaryotic chromosomes that are strongly implicated in ageing and ill health. They attrition upon every cellular reproductive cycle. Evidence suggests that short telomeres trigger DNA damage responses that lead to cellular senescence. Accurate methods for measuring telomeres are required to fully investigate the roles that shortening telomeres play in the biology of disease and human ageing. The last two decades have brought forth several techniques that are used for measuring telomeres. This editorial highlights strengths and limitations of traditional and emerging techniques, guiding researchers to choose the most appropriate methodology for their research needs. These methods include Quantitative Polymerase Chain Reaction (qPCR), Omega qPCR (Ω-qPCR), Terminal Restriction Fragment analysis (TRF), Single Telomere Absolute-length Rapid (STAR) assays, Single TElomere Length Analysis (STELA), TElomere Shortest Length Assays (TESLA), Telomere Combing Assays (TCA), and Long-Read Telomere Sequencing. Challenges include replicating telomere measurement within and across cohorts, measuring the length of telomeres on individual chromosomes, and standardised reporting for publications. Areas of current and future focus have been highlighted, with recent methodical advancements, such as long-read sequencing, providing significant scope to study telomeres at an individual chromosome level.
Collapse
Affiliation(s)
- Tiernan Coulter
- Centre for Public Health, Queen's University Belfast, Institute of Clinical Sciences - Block A, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BJ, UK
| | - Claire Hill
- Centre for Public Health, Queen's University Belfast, Institute of Clinical Sciences - Block A, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BJ, UK.
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University Belfast, Institute of Clinical Sciences - Block A, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BJ, UK.
| |
Collapse
|
2
|
Allaire P, He J, Mayer J, Moat L, Gerstenberger P, Wilhorn R, Strutz S, Kim DS, Zeng C, Cox N, Shay JW, Denny J, Bastarache L, Hebbring S. Genetic and clinical determinants of telomere length. HGG ADVANCES 2023; 4:100201. [PMID: 37216007 PMCID: PMC10199259 DOI: 10.1016/j.xhgg.2023.100201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Many epidemiologic studies have identified important relationships between leukocyte telomere length (LTL) with genetics and health. Most of these studies have been significantly limited in scope by focusing predominantly on individual diseases or restricted to GWAS analysis. Using two large patient populations derived from Vanderbilt University and Marshfield Clinic biobanks linked to genomic and phenomic data from medical records, we investigated the inter-relationship between LTL, genomics, and human health. Our GWAS confirmed 11 genetic loci previously associated with LTL and two novel loci in SCNN1D and PITPNM1. PheWAS of LTL identified 67 distinct clinical phenotypes associated with both short and long LTL. We demonstrated that several diseases associated with LTL were related to one another but were largely independent from LTL genetics. Age of death was correlated with LTL independent of age. Those with very short LTL (<-1.5 standard deviation [SD]) died 10.4 years (p < 0.0001) younger than those with average LTL (±0.5 SD; mean age of death = 74.2 years). Likewise, those with very long LTL (>1.5 SD) died 1.9 years (p = 0.0175) younger than those with average LTL. This is consistent with the PheWAS results showing diseases associating with both short and long LTL. Finally, we estimated that the genome (12.8%) and age (8.5%) explain the largest proportion of LTL variance, whereas the phenome (1.5%) and sex (0.9%) explained a smaller fraction. In total, 23.7% of LTL variance was explained. These observations provide the rationale for expanded research to understand the multifaceted correlations between TL biology and human health over time, leading to effective LTL usage in medical applications.
Collapse
Affiliation(s)
- Patrick Allaire
- Marshfield Clinic Research Institute, Center for Precision Medicine Research, Marshfield, WI, USA
| | - Jing He
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John Mayer
- Marshfield Clinic Research Institute, Office of Research Computing and Analytics, Marshfield, WI, USA
| | - Luke Moat
- Marshfield Clinic Research Institute, Center for Precision Medicine Research, Marshfield, WI, USA
| | - Peter Gerstenberger
- Marshfield Clinic Research Institute, Center for Precision Medicine Research, Marshfield, WI, USA
| | - Reynor Wilhorn
- Marshfield Clinic Research Institute, Center for Precision Medicine Research, Marshfield, WI, USA
| | - Sierra Strutz
- Marshfield Clinic Research Institute, Center for Precision Medicine Research, Marshfield, WI, USA
| | - David S.L. Kim
- Marshfield Clinic Health System, Pathology, Marshfield, WI, USA
| | - Chenjie Zeng
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nancy Cox
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jerry W. Shay
- University of Texas Southwestern Medical Center, Department of Cell Biology and the Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Joshua Denny
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Bastarache
- Center for Precision Medicine, Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott Hebbring
- Marshfield Clinic Research Institute, Center for Precision Medicine Research, Marshfield, WI, USA
| |
Collapse
|
3
|
Hastings WJ, Etzel L, Heim CM, Noll JG, Rose EJ, Schreier HMC, Shenk CE, Tang X, Shalev I. Comparing qPCR and DNA methylation-based measurements of telomere length in a high-risk pediatric cohort. Aging (Albany NY) 2022; 14:660-677. [PMID: 35077392 PMCID: PMC8833135 DOI: 10.18632/aging.203849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
Various approaches exist to assess population differences in biological aging. Telomere length (TL) is one such measure, and is associated with disease, disability and early mortality. Yet, issues surrounding precision and reproducibility are a concern for TL measurement. An alternative method to estimate TL using DNA methylation (DNAmTL) was recently developed. Although DNAmTL has been characterized in adult and elderly cohorts, its utility in pediatric populations remains unknown. We examined the comparability of leukocyte TL measurements generated using qPCR (absolute TL; aTL) to those estimated using DNAmTL in a high-risk pediatric cohort (N = 269; age: 8–13 years, 83% investigated for maltreatment). aTL and DNAmTL measurements were correlated with one another (r = 0.20, p = 0.001), but exhibited poor measurement agreement and were significantly different in paired-sample t-tests (Cohen’s d = 0.77, p < 0.001). Shorter DNAmTL was associated with older age (r = −0.25, p < 0.001), male sex (β = −0.27, p = 0.029), and White race (β = −0.74, p = 0.008). By contrast, aTL was less strongly associated with age (r = −0.13, p = 0.040), was longer in males (β = 0.31, p = 0.012), and was not associated with race (p = 0.820). These findings highlight strengths and limitations of high-throughput measures of TL; although DNAmTL replicated hypothesized associations, aTL measurements were positively skewed and did not replicate associations with external validity measures. These results also extend previous research in adults and suggest that DNAmTL is a sensitive TL measure for use in pediatric populations.
Collapse
Affiliation(s)
- Waylon J Hastings
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Etzel
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christine M Heim
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Jennie G Noll
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA 16802, USA
| | - Emma J Rose
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA 16802, USA.,The Edna Bennett Pierce Prevention Research Center, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hannah M C Schreier
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chad E Shenk
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Xin Tang
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Idan Shalev
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Hastings WJ, Eisenberg DTA, Shalev I. Uninterruptible Power Supply Improves Precision and External Validity of Telomere Length Measurement via qPCR. EXPERIMENTAL RESULTS 2020; 1:e52. [PMID: 33718773 PMCID: PMC7954403 DOI: 10.1017/exp.2020.58] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Technical challenges associated with telomere length (TL) measurements have prompted concerns regarding their utility as a biomarker of aging. Several factors influence TL assessment via qPCR, the most common measurement method in epidemiological studies, including storage conditions and DNA extraction method. Here, we tested the impact of power supply during the qPCR assay. Momentary fluctuations in power can affect the functioning of high-performance electronics, including real-time thermocyclers. We investigated if mitigating these fluctuations by using an uninterruptible power supply (UPS) influenced TL assessment via qPCR. Samples run with a UPS had significantly lower standard deviation (p < 0.001) and coefficient of variation (p < 0.001) across technical replicates than those run without a UPS. UPS usage also improved exponential amplification efficiency at the replicate, sample, and plate levels. Together these improvements translated to increased performance across metrics of external validity including correlation with age, within-person correlation across tissues, and correlation between parents and offspring.
Collapse
Affiliation(s)
- Waylon J Hastings
- Department of Biobehavioral Health, The Pennsylvania State University, University Park PA, USA
| | - Dan T A Eisenberg
- Department of Anthropology, University of Washington, Seattle, WA, USA
| | - Idan Shalev
- Department of Biobehavioral Health, The Pennsylvania State University, University Park PA, USA
| |
Collapse
|
5
|
Joglekar MV, Satoor SN, Wong WK, Cheng F, Ma RC, Hardikar AA. An Optimised Step-by-Step Protocol for Measuring Relative Telomere Length. Methods Protoc 2020; 3:mps3020027. [PMID: 32260112 PMCID: PMC7359711 DOI: 10.3390/mps3020027] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023] Open
Abstract
Telomeres represent the nucleotide repeat sequences at the ends of chromosomes and are essential for chromosome stability. They can shorten at each round of DNA replication mainly because of incomplete DNA synthesis of the lagging strand. Reduced relative telomere length is associated with aging and a range of disease states. Different methods such as terminal restriction fragment analysis, real-time quantitative PCR (qPCR) and fluorescence in situ hybridization are available to measure telomere length; however, the qPCR-based method is commonly used for large population-based studies. There are multiple variations across qPCR-based methods, including the choice of the single-copy gene, primer sequences, reagents, and data analysis methods in the different reported studies so far. Here, we provide a detailed step-by-step protocol that we have optimized and successfully tested in the hands of other users. This protocol will help researchers interested in measuring relative telomere lengths in cells or across larger clinical cohort/study samples to determine associations of telomere length with health and disease.
Collapse
Affiliation(s)
- Mugdha V. Joglekar
- Diabetes and Islet biology, NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2150, Australia; (S.N.S.); (W.K.M.W.)
- Correspondence: (M.V.J.); (A.A.H.); Tel.: +61-2-9562-5084 (M.V.J.); +61-2-9562-5071 (A.A.H.)
| | - Sarang N. Satoor
- Diabetes and Islet biology, NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2150, Australia; (S.N.S.); (W.K.M.W.)
- DNA Sequencing Laboratory, National Centre for Cell Science, NCMR Campus, Sai Trinity Complex, Pashan, Pune 411 021, India
| | - Wilson K.M. Wong
- Diabetes and Islet biology, NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2150, Australia; (S.N.S.); (W.K.M.W.)
| | - Feifei Cheng
- Department of Medicine & Therapeutics and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China; (F.C.)
| | - Ronald C.W. Ma
- Department of Medicine & Therapeutics and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China; (F.C.)
| | - Anandwardhan A. Hardikar
- Diabetes and Islet biology, NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2150, Australia; (S.N.S.); (W.K.M.W.)
- Correspondence: (M.V.J.); (A.A.H.); Tel.: +61-2-9562-5084 (M.V.J.); +61-2-9562-5071 (A.A.H.)
| |
Collapse
|
6
|
Morinha F, Magalhães P, Blanco G. Standard guidelines for the publication of telomere qPCR results in evolutionary ecology. Mol Ecol Resour 2020; 20. [PMID: 32133733 DOI: 10.1111/1755-0998.13152] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/14/2022]
Abstract
Telomere length has been used as a proxy of fitness, aging and lifespan in vertebrates. In the last decade, dozens of articles reporting on telomere dynamics in the fields of ecology and evolution have been published for a wide range of taxa. With this growing interest, it is necessary to ensure the accuracy and reproducibility of telomere length measurement techniques. Real-time quantitative PCR (qPCR) is routinely applied to measure relative telomere length. However, this technique is highly sensitive to several methodological variables and the optimization of qPCR telomere assays remains highly variable between studies. Therefore, standardized guidelines are required to enable the optimization of robust protocols, and to help in judging the validity of the presented results. This review provides an overview of preanalytical and analytical factors that can lead to qPCR inconsistencies and biases, including: (a) sample type, collection and storage; (b) DNA extraction, storage and quality; (c) qPCR primers, laboratory reagents, and assay conditions; and (d) data analysis. We propose a minimum level of information for publication of qPCR telomere assays in evolutionary ecology considering the methodological pitfalls and sources of error. This review highlights the complexity of the optimization and validation of qPCR for telomere measurement per se, demonstrating the importance of transparency and clarity of reporting methodological details required for reliable, reproducible and comparable qPCR telomere assays. We encourage efforts to implement standardized protocols that ensure the rigour and quality of telomere dynamics studies.
Collapse
Affiliation(s)
- Francisco Morinha
- Department of Evolutionary Ecology, National Museum of Natural Sciences (MNCN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Paula Magalhães
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Guillermo Blanco
- Department of Evolutionary Ecology, National Museum of Natural Sciences (MNCN), Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
7
|
González-Giraldo Y, Garzón-Benitez AV, Forero DA, Barreto GE. TERT inhibition leads to reduction of IL-6 expression induced by palmitic acid and interferes with the protective effects of tibolone in an astrocytic cell model. J Neuroendocrinol 2019; 31:e12768. [PMID: 31278797 DOI: 10.1111/jne.12768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 01/04/2023]
Abstract
Although it has been shown that telomerase has neuroprotective effects, mainly as a result of its non-canonical functions in neuronal cells, its role with respect to glial cells remains unknown. There is growing evidence indicating that telomerase plays an important role with respect to inflammation, especially in the regulation of pro-inflammatory cytokine gene expression. The present study aimed to evaluate the role of telomerase in an astrocyte cell model treated with palmitic acid (PA) and tibolone. Cell death, reactive oxygen species production and interleukin-6 expression were evaluated under telomerase inhibition with the BIBR1532 compound in T98G cells treated with tibolone and PA, using fluorometry, flow cytometry, enzyme-linked immunosorbent assays and the quantitative polymerase chain reaction. The results obtained showed that telomerase protein was increased by PA after 36 hours, alone or in combination with tibolone, and that its activity was affected by PA. Telomerase inhibition reduced interleukin-6 expression and it interfered with the protective effects of tibolone on cell death. Moreover, tibolone increased Tyr707 phosphorylation in PA-treated cells. In the present study, we provide novel findings about the regulation of telomerase by PA and tibolone. Telomerase was involved in inflammation by PA and in protective effects of tibolone. Therefore, we conclude that telomerase could play a dual role in these cells.
Collapse
Affiliation(s)
- Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Angie V Garzón-Benitez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Diego A Forero
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| |
Collapse
|
8
|
Mensà E, Latini S, Ramini D, Storci G, Bonafè M, Olivieri F. The telomere world and aging: Analytical challenges and future perspectives. Ageing Res Rev 2019; 50:27-42. [PMID: 30615937 DOI: 10.1016/j.arr.2019.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/15/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
Telomeres, the terminal nucleoprotein structures of eukaryotic chromosomes, play pleiotropic functions in cellular and organismal aging. Telomere length (TL) varies throughout life due to the influence of genetic factors and to a complex balancing between "shortening" and "elongation" signals. Telomerase, the only enzyme that can elongate a telomeric DNA chain, and telomeric repeat-containing RNA (TERRA), a long non-coding RNA involved in looping maintenance, play key roles in TL during life. Despite recent advances in the knowledge of TL, TERRA and telomerase activity (TA) biology and their measurement techniques, the experimental and theoretical issues involved raise a number of problems that should carefully be considered by researchers approaching the "telomere world". The increasing use of such parameters - hailed as promising clinically relevant biomarkers - has failed to be paralleled by the development of automated and standardized measurement technology. Consequently, associating given TL values to specific pathological conditions involves on the one hand technological issues and on the other clinical-biological issues related to the planning of clinically relevant association studies. Addressing these issues would help avoid major biases in association studies involving TL and a number of outcomes, especially those focusing on psychological and bio-behavioral variables. The main challenge in telomere research is the development of accurate and reliable measurement methods to achieve simple and sensitive TL, TERRA, and TA detection. The discovery of the localization of telomeres and TERRA in cellular and extracellular compartments had added an additional layer of complexity to the measurement of these age-related biomarkers. Since combined analysis of TL, TERRA and TA may well provide more exhaustive clinical information than a single parameter, we feel it is important for researchers in the various fields to become familiar with their most common measurement techniques and to be aware of the respective merits and drawbacks of these approaches.
Collapse
Affiliation(s)
- Emanuela Mensà
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Silvia Latini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Deborah Ramini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Gianluca Storci
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Bologna, Italy; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Biosciences Laboratory, Meldola, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy.
| |
Collapse
|
9
|
Lin J, Smith DL, Esteves K, Drury S. Telomere length measurement by qPCR - Summary of critical factors and recommendations for assay design. Psychoneuroendocrinology 2019; 99:271-278. [PMID: 30343983 PMCID: PMC6363640 DOI: 10.1016/j.psyneuen.2018.10.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/06/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
Research in the last decade has explored the length of telomeres, the protective ends of eukaryotic chromosomes, as a biomarker for the cumulative effects of environmental exposures and life experiences as well as a risk factor for major diseases. With a growing interest in telomere biology across biomedical, epidemiological and public health research, it is critical to ensure that the measurement of telomere length is performed with high precision and accuracy. Of the several major methods utilized to determine telomere length, quantitative PCR (qPCR) remains the most cost-effective and suitable method for large-scale epidemiological and population studies. However, inconsistencies in recent reports utilizing the qPCR method highlight the need for a careful methodological analysis of each step of this process. In this review, we summarize each critical step in qPCR telomere length assay, including sample type selection, sample collection, storage, processing issues and assay procedures. We provide guidance and recommendations for each step based on current knowledge. It is clear that a collaborative and rigorous effort is needed to characterize and resolve existing issues related to sample storage, both before and after DNA extraction, as well as the impact of different extraction protocols, reagents and post extraction processing across all tissue types (e.g. blood, saliva, buccal swabs, etc.) to provide the needed data upon which best practices for TL analyses can be agreed upon. Additionally, we suggest that the whole telomere research community be invited to collaborate on the development and implementation of standardized protocols for the assay itself as well as for reporting in scientific journals. The existing evidence provides substantial support for the continuation of telomere research across a range of different exposures and health outcomes. However, as with any technological or methodologic advance in science, reproducibility, reliability and rigor need to be established to ensure the highest quality research.
Collapse
Affiliation(s)
- Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, United States.
| | - Dana L. Smith
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, United States
| | - Kyle Esteves
- Division of Child and Adolescent Psychiatry, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Stacy Drury
- Department of Psychiatry, Tulane University Brain Institute, Tulane University, New Orleans, LA, 70112, United States
| |
Collapse
|
10
|
Scarabino D, Veneziano L, Peconi M, Frontali M, Mantuano E, Corbo RM. Leukocyte telomere shortening in Huntington's disease. J Neurol Sci 2018; 396:25-29. [PMID: 30396032 DOI: 10.1016/j.jns.2018.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by an expanded CAG repeat. Though symptom onset commonly occurs at midlife and inversely correlates with the CAG repeat expansion, age at clinical onset and progression rate are variable. In the present study we investigated the relationship between leukocyte telomere length (LTL) and HD development. LTL was measured by real-time PCR in manifest HD patients (HD, n = 62), pre-manifest HD patients (pre-HD, n = 38), and age-matched controls (n = 76). Significant LTL differences were observed between the three groups (p < .0001), with LTL values in the order: HD < pre-HD < controls. The relationship between LTL and age was different in the three groups. An inverse relationship between mean LTL and CAG repeat number was found in the pre-HD (p = .03). The overall data seem to indicate that after age 30 years, LT begins to shorten markedly in pre-HD patients according to CAG number and increasing age, up to the values observed in HD. This very suggestive picture allowed us to hypothesize that in pre-manifest HD, LTL could be a measure of time to clinical HD onset. The possible use of LTL as a reliable biomarker to track HD development and progression was evaluated and discussed.
Collapse
Affiliation(s)
- Daniela Scarabino
- CNR Institute of Molecular Biology and Pathology, c/o Department of Biology and Biotechnology, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Liana Veneziano
- CNR Institute of Translational Pharmacology, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Martina Peconi
- CNR Institute of Translational Pharmacology, Via Fosso del Cavaliere 100, 00133 Rome, Italy; Department of Biology and Biotechnology, La Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Marina Frontali
- CNR Institute of Translational Pharmacology, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Elide Mantuano
- CNR Institute of Translational Pharmacology, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Rosa Maria Corbo
- CNR Institute of Molecular Biology and Pathology, c/o Department of Biology and Biotechnology, P.le Aldo Moro 5, 00185 Rome, Italy; Department of Biology and Biotechnology, La Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|