1
|
Xue Y, Yan Q, Tian X, Han D, Jiang Z. High-level secretory expression and characterization of an acid protease in Komagataella phaffii and its application in soybean meal protein degradation. Int J Biol Macromol 2024; 282:137011. [PMID: 39481721 DOI: 10.1016/j.ijbiomac.2024.137011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/22/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Acid proteases play a crucial role in the industrial enzyme market, but low yield limits their widespread application. In this study, we focused on enhancing the secretory expression level of an acid protease (AopepA) from Aspergillus oryzae in Komagataella phaffii through stepwise genetic modification strategies. These included the co-expression of endoplasmic reticulum secretion-associated factors, overexpression of eukaryotic translation initiation factors, knockout of the β-1,3-glucanosyltransferase gene, disruption of the hypoxic heme-dependent repressor gene, and co-expression of the hemoglobin gene. After these modifications, protease activity increased by 4.2-fold, reaching 536.6 U/mL in a shaking flask. The engineered strain produced protease activity of up to 17,392.0 U/mL with a protein concentration of 44.6 g/L in a 5 L fermenter, representing the highest secretory expression level of acid proteases in K. phaffii ever reported. The optimal conditions of AopepA were pH 3.0 and 50 °C. AopepA demonstrated broad hydrolysis activity towards various protein substrates. It efficiently degraded soybean meal proteins into low molecular weight (Mw < 1 kDa, accounting for 82 %) oligopeptides to enhance protein utilization. This study provides valuable insights into improving the secretory expression of acid proteases in K. phaffii and identifies a suitable acid protease for enhancing soybean meal protein utilization.
Collapse
Affiliation(s)
- Yibin Xue
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Xueting Tian
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Dong Han
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
2
|
Herman RA, Ayepa E, Zhang WX, Li ZN, Zhu X, Ackah M, Yuan SS, You S, Wang J. Molecular modification and biotechnological applications of microbial aspartic proteases. Crit Rev Biotechnol 2024; 44:388-413. [PMID: 36842994 DOI: 10.1080/07388551.2023.2171850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/13/2022] [Accepted: 01/07/2023] [Indexed: 02/28/2023]
Abstract
The growing preference for incorporating microbial aspartic proteases in industries is due to their high catalytic function and high degree of substrate selectivity. These properties, however, are attributable to molecular alterations in their structure and a variety of other characteristics. Molecular tools, functional genomics, and genome editing technologies coupled with other biotechnological approaches have aided in improving the potential of industrially important microbial proteases by addressing some of their major limitations, such as: low catalytic efficiency, low conversion rates, low thermostability, and less enzyme yield. However, the native folding within their full domain is dependent on a surrounding structure which challenges their functionality in substrate conversion, mainly due to their mutual interactions in the context of complex systems. Hence, manipulating their structure and controlling their expression systems could potentially produce enzymes with high selectivity and catalytic functions. The proteins produced by microbial aspartic proteases are industrially capable and far-reaching in regulating certain harmful distinctive industrial processes and the benefits of being eco-friendly. This review provides: an update on current trends and gaps in microbial protease biotechnology, exploring the relevant recombinant strategies and molecular technologies widely used in expression platforms for engineering microbial aspartic proteases, as well as their potential industrial and biotechnological applications.
Collapse
Affiliation(s)
- Richard Ansah Herman
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China
| | - Ellen Ayepa
- Oil Palm Research Institute, Council for Scientific and Industrial Research, Kusi, Ghana
| | - Wen-Xin Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Zong-Nan Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Xuan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuang-Shuang Yuan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| |
Collapse
|
3
|
Silva RDS, Segura WD, Oliveira RS, Xander P, Batista WL. Characterization of Aspartic Proteases from Paracoccidioides brasiliensis and Their Role in Fungal Thermo-Dimorphism. J Fungi (Basel) 2023; 9:jof9030375. [PMID: 36983543 PMCID: PMC10053120 DOI: 10.3390/jof9030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is the most prevalent systemic mycosis in Latin America and is caused by fungi from the Paracoccidioides genus. The infection begins after inhalation of the fungal propagules and their thermo-dimorphic shift to yeast form. Proteases play an important role in the host invasion process and immune modulation in many pathogenic microorganisms. Aspartyl proteases are virulence factors in many human fungal pathogens that play an important role in the host invasion process morphogenesis, cellular function, immunity, and nutrition. In the present study, we characterized the modulation of acid proteases from Paracoccidioides brasiliensis. We detected four aspartyl proteases in P. brasiliensis with high homology to aspartic protease from Saccharomyces cerevisiae Pep4. Furthermore, we demonstrated that Pepstatin A can inhibit dimorphic switching (mycelium→yeast) in P. brasiliensis. In addition, these genes were modulated during thermo-dimorphism (M→Y transition) in the presence or absence of carbon and nitrogen sources and during growth at pH 4 during 24 and 48 h. We also observed that P. brasiliensis increase the secretion of aspartic proteases when cultivated at pH 4, and these acid proteases cleave BSA, collagen, and hemoglobin. These data suggest that aspartyl proteases are modulated by environmental conditions and during fungal thermo-dimorphism. Thus, this work brings new possibilities for studying the role of aspartyl proteases in the host-pathogen relationship and P. brasiliensis biology.
Collapse
Affiliation(s)
- Rafael de Souza Silva
- Departamento Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - Wilson Dias Segura
- Departamento Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - Reinaldo Souza Oliveira
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| | - Patricia Xander
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| | - Wagner Luiz Batista
- Departamento Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| |
Collapse
|
4
|
Juárez-Montiel M, Clark-Flores D, Tesillo-Moreno P, de la Vega-Camarillo E, Andrade-Pavón D, Hernández-García JA, Hernández-Rodríguez C, Villa-Tanaca L. Vacuolar proteases and autophagy in phytopathogenic fungi: A review. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:948477. [PMID: 37746183 PMCID: PMC10512327 DOI: 10.3389/ffunb.2022.948477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/11/2022] [Indexed: 09/26/2023]
Abstract
Autophagy (macroautophagy) is a survival and virulence mechanism of different eukaryotic pathogens. Autophagosomes sequester cytosolic material and organelles, then fuse with or enter into the vacuole or lysosome (the lytic compartment of most fungal/plant cells and many animal cells, respectively). Subsequent degradation of cargoes delivered to the vacuole via autophagy and endocytosis maintains cellular homeostasis and survival in conditions of stress, cellular differentiation, and development. PrA and PrB are vacuolar aspartyl and serine endoproteases, respectively, that participate in the autophagy of fungi and contribute to the pathogenicity of phytopathogens. Whereas the levels of vacuolar proteases are regulated by the expression of the genes encoding them (e.g., PEP4 for PrA and PRB1 for PrB), their activity is governed by endogenous inhibitors. The aim of the current contribution is to review the main characteristics, regulation, and role of vacuolar soluble endoproteases and Atg proteins in the process of autophagy and the pathogenesis of three fungal phytopathogens: Ustilago maydis, Magnaporthe oryzae, and Alternaria alternata. Aspartyl and serine proteases are known to participate in autophagy in these fungi by degrading autophagic bodies. However, the gene responsible for encoding the vacuolar serine protease of U. maydis has yet to be identified. Based on in silico analysis, this U. maydis gene is proposed to be orthologous to the Saccharomyces cerevisiae genes PRB1 and PBI2, known to encode the principal protease involved in the degradation of autophagic bodies and its inhibitor, respectively. In fungi that interact with plants, whether phytopathogenic or mycorrhizal, autophagy is a conserved cellular degradation process regulated through the TOR, PKA, and SNF1 pathways by ATG proteins and vacuolar proteases. Autophagy plays a preponderant role in the recycling of cell components as well as in the fungus-plant interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| |
Collapse
|
5
|
Saville BJ, Perlin MH. "When worlds collide and smuts converge": Tales from the 1st International Ustilago/Smut Convergence. Fungal Genet Biol 2019; 132:103260. [PMID: 31394176 DOI: 10.1016/j.fgb.2019.103260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 11/15/2022]
Abstract
From the evening of March 12, till dinner on March 13, 2017, the 1st International Ustilago/Smut Convergence took place as a workshop prior to the start of the 29th Fungal Genetics Conference, in Asilomar, California. The overall goals of the meeting were to expand the smut model systems being used and to expand participation by the next generations of scientists with these fungi. These goals were implemented through a combination of emphasis on student and post-doc presentations, mentoring of such individuals, and active recruitment of participation by groups under-represented at such meetings in recent years in the US, especially those from Latin America and other Spanish-speaking countries. Work was presented at the first workshop on U. maydis, Sporosorium reilianum, Microbotryum violaceum, U. esculenta, and Thecaphora thlaspeos. Students and post-doctoral researchers were encouraged to present their "just-in-time," as-yet-unpublished data, in a safe environment, with the understanding of those attending the meeting that this early access was a privilege not to be taken advantage of. The result was lively and constructive discussion, including a variety of presentations by these young scientists on putative and characterized smut effector proteins, clearly at the forefront of such research, even considering the advances presented later that week at the Fungal Genetics Conference. This review also briefly compares the first meeting with the events of the recent 2nd International Ustilago/Smut Convergence (March 11-12, 2019), which ended with a tribute to Prof. Dr. Regine Kahmann, in honor of her career, and especially for her contributions to the field of smut genetics.
Collapse
Affiliation(s)
- Barry J Saville
- Forensic Science Program, Trent University, Peterborough, Canada
| | - Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA.
| |
Collapse
|