1
|
Simulation, In Vitro, and In Vivo Cytotoxicity Assessments of Methotrexate-Loaded pH-Responsive Nanocarriers. Polymers (Basel) 2021; 13:polym13183153. [PMID: 34578054 PMCID: PMC8471936 DOI: 10.3390/polym13183153] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
In this study, pH-responsive niosomal methotrexate (MTX) modified with ergosterol was prepared for potential anticancer application. The prepared formulation had a size of 176.7 ± 3.4 nm, zeta potential of −31.5 ± 2.6 mV, EE% of 76.9 ± 2.5%, and a pH-responsive behavior in two different pHs (5.4 and 7.4). In-silico evaluations showed that MTX intended to make a strong hydrogen bond with Span 60 compartments involving N2 and O4 atoms in glutamic acid and N7 atom in pteridine ring moieties, respectively. The cytotoxic effects of free and pH-MTX/Nio were assessed against MCF7 and HUVECs. Compared with free MTX, we found significantly lower IC50s when MCF7 cells were treated with niosomal MTX (84.03 vs. 9.464 µg/mL after 48 h, respectively). Moreover, lower cell killing activity was observed for this formulation in normal cells. The pH-MTX/Nio exhibited a set of morphological changes in MCF7 cells observed during cell death. In-vivo results demonstrated that intraperitoneal administration of free MTX (2 mg/kg) after six weeks caused a significant increase in serum blood urea nitrogen (BUN), serum creatinine, and serum malondialdehyde (MDA) levels of rats compared to the normal control rats. Treatment with 2 and 4 mg/kg doses of pH-MTX/Nio significantly increased serum BUN, serum creatinine, and serum lipid peroxidation. Still, the safety profile of such formulations in healthy cells/tissues should be further investigated.
Collapse
|
2
|
Miri A, Mahabbati F, Najafidoust A, Miri MJ, Sarani M. Nickel oxide nanoparticles: biosynthesized, characterization and photocatalytic application in degradation of methylene blue dye. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1862226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Abdolhossein Miri
- Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Fatemah Mahabbati
- Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Ahmad Najafidoust
- Department of Chemical Engineering, Sahand University of Technology, Tabriz, Iran
- Water and Wastewater Company of Tabriz, Tabriz, Iran
| | - Mohammad Javad Miri
- Pediatric Gastroenterology and Hepatology Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Mina Sarani
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
3
|
Khatami M, Khatami S, Mosazade F, Raisi M, Haghighat M, Sabaghan M, Yaghoubi S, Sarani M, Bamorovat M, Malekian L, Naroi A, S Varma R. Greener synthesis of Rod Shaped Zinc Oxide Nanoparticles using Lilium ledebourii tuber and evaluation of their Leishmanicidal activity. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020; 18:e2196. [PMID: 32884950 PMCID: PMC7461714 DOI: 10.30498/ijb.2020.119481.2196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Nanoparticles (NPs) with unique chemical and physical properties can be used for therapeutic purposes because of their strong antimicrobial activates. Nanoparticles have been used as an antimicrobial agents to inhibit microbial growth. Objectives In view of the strong antimicrobial activity of nanoparticles, the biogenic synthesis and leishmanicidal activity of rod-shaped zinc oxide (R-ZnO) nanoparticles was explored using Lilium ledebourii tuber extract. Materials and Methods The ensuing nanoparticles are characterized by UV-visible spectroscopy, X-ray diffraction and transmission electron microscopy and their leishmanicidal activity evaluated against the Leishmania major (L. major) by MTT assay. Results The R-ZnO nanoparticles displayed excellent leishmanicidal activity against the L. major as they significantly inhibited the amastigotes. The IC50 values of R-ZnO nanoparticles being ~ 0.001 mg.mL-1. R-ZnO nanoparticles can inhibit L. major growth in a dose-dependent manner under in vitro conditions. Conclusion A simple, low-cost feasible and eco-friendly procedure was developed for biosynthesis of R-ZnO nanoparticles using natural bioresource that can inhibit human parasite cells growth in a dose-dependent manner under in vitro conditions.
Collapse
Affiliation(s)
- Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farideh Mosazade
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mahammadali Raisi
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | | | | | - Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Mina Sarani
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Leila Malekian
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Afsoon Naroi
- Student Research Committee, School of Public Health, Bam University of Medical Sciences, Bam, Iran
| | - Rajender S Varma
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran.,Behbahan Faculty of Medical Sciences, Behbahan, Iran.,Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran.,Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran.,Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Student Research Committee, School of Public Health, Bam University of Medical Sciences, Bam, Iran.,Regional Centre of Advanced Technologies and Materials Faculty of Science, Palacky University in Olomouc, Olomouc, Czech Republic
| |
Collapse
|