1
|
Huang J, Zhang J, Sun C, Yang R, Sheng M, Hu J, Kai G, Han B. Adjuvant role of Salvia miltiorrhiza bunge in cancer chemotherapy: A review of its bioactive components, health-promotion effect and mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117022. [PMID: 37572929 DOI: 10.1016/j.jep.2023.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chemotherapy is a common cancer treatment strategy. However, its effectiveness is constrained by toxicity and adverse effects. The Lamiaceae herb Salvia miltiorrhiza Bunge has a long history of therapeutic use in the treatment of blood stasis illnesses, which are believed by traditional Chinese medicine to be connected to cancer. AIM OF THE STUDY This review summarized the common toxicity of chemotherapy and the potential chemo-adjuvant effect and mechanisms of active ingredients from S. miltiorrhiza, hoping to provide valuable information for the development and application of S. miltiorrhiza resources. MATERIALS AND METHODS The literatures were retrieved from PubMed, Web of Science, Baidu Scholar and Google Scholar databases from 2002 to 2022. The inclusion criteria were studies reporting that S. miltiorrhiza or its constituents enhanced the efficiency of chemotherapy drugs or reduced the side effects. RESULTS Salvianolic acid A, salvianolic acid B, salvianolic acid C, rosmarinic acid, tanshinone I, tanshinone IIA, cryptotanshinone, dihydrotanshinone I and miltirone are the primary adjuvant chemotherapy components of S. miltiorrhiza. The mechanisms mainly involve inhibiting proliferation, metastasis, and angiogenesis, inducing apoptosis, regulating autophagy and tumor microenvironment. In addition, they also improve chemotherapy drug-induced side effects. CONCLUSIONS The bioactive compounds of S. miltiorrhiza are shown to inhibit proliferation, metastasis, and angiogenesis, induce apoptosis and autophagy, regulate immunity and tumor microenvironment when combined with chemotherapy drugs. However, further clinical studies are required to validate the current studies.
Collapse
Affiliation(s)
- Jiayan Huang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Chengtao Sun
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Ruiwen Yang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Miaomiao Sheng
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiangning Hu
- Zhejiang Conba Pharmaceutical Limited Company, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, 310052, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Zhejiang Conba Pharmaceutical Limited Company, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, 310052, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Zhang Y, Yang X, Zhou H, Yao G, Zhou L, Qian C. BIBR1532 inhibits proliferation and enhances apoptosis in multiple myeloma cells by reducing telomerase activity. PeerJ 2023; 11:e16404. [PMID: 37953768 PMCID: PMC10638922 DOI: 10.7717/peerj.16404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Background Multiple myeloma (MM) is a rare haematological disorder with few therapeutic options. BIBR1532, a telomerase inhibitor, is widely used in cancer treatment and has promising outcomes. In this study, we investigated the efficacy and mechanism of action of BIBR1532 in MM. Methods K562 and MEG-01 cells were cultured with BIBR1532 at different concentrations. After 24 and 48 h, cell survival was analyzed. Next, these cells were cultured with 25 and 50 µM BIBR1532 for 48 h, then, cell proliferation, apoptosis, and the expression of the telomerase activity related markers were tested by 5-Ethynyl-2'-deoxyuridine (EdU) staining, flow cytometric analysis, western blot and quantitative real-time PCR (qRT-PCR), respectively. Expression of Bcl-xL, Bad, Survivin, phosphorylation of PI3K, AKT, mTOR, ERK1/2, and MAPK were tested via western blotting. Further experiments were conducted to evaluate the synergistic effects of BIBR1532 and doxorubicin (Dox) or bortezomib (Bor). Results BIBR1532 inhibited K562 and MEG-01 cell survival in a dose- and time-dependent manner. In addition, BIBR1532 hindered cell proliferation while promoting apoptosis, and this effect was enhanced by increasing the BIBR1532 concentration. Moreover, BIBR1532 inhibited TERT and c-MYC expression, PI3K, AKT, mTOR phosphorylation, and facilitated ERK1/2 and MAPK phosphorylation. Additionally, BIBR1532 combined with Dox or Bor showed synergistic effects in MM treatment. Conclusion BIBR1532 inhibits proliferation and promotes apoptosis in MM cells by inhibiting telomerase activity. Additionally, BIBR1532 combined with Dox or Bor exhibited synergistic effects, indicating that BIBR1532 may be a novel medicine for the treatment of MM.
Collapse
Affiliation(s)
- Yuefeng Zhang
- Department of Hematology, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Xinxin Yang
- Department of Hematology, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Hangqun Zhou
- Medical School, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Guoli Yao
- Department of Hematology, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Li Zhou
- Department of Oncology, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Chunyan Qian
- Clinical Laboratory, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Kalal AA, Shetty RA, Manjappa AB, Kulkarni NV, Shetty P. Prognostic significance of dysregulation of shelterin complex and its correlation with telomere length and cytogenetics in multiple myeloma. J Genet Eng Biotechnol 2023; 21:50. [PMID: 37131110 PMCID: PMC10154441 DOI: 10.1186/s43141-023-00504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND MM (multiple myeloma) is a bone marrow disease with the accumulation of malignant plasma cells characterized by the neoplastic transformation of differentiated B cells. The onset and progression of cancer are greatly influenced by telomere dysfunction. We aimed to study the biomarker potential and prognostic significance of shelterin complex and hTERT. Telomere length and gene expression were measured using real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR), and these results were further correlated with clinical parameters. RESULTS Our study showed increased expression of all genes in complex, hTERT, and TL in MM (n = 72) in comparison with controls (n = 31). TRF2 (P = 0.025) and hTERT (P = 0.0002) displayed significant association among cytogenetic analysis. The receiver operative curve showed POT1 and RAP1 with a greater area under the curve (AUC). RAP1 (P = 0.020) and hTERT (P = 0.037) displayed to be independent prognostic markers for overall survival. Clinical parameters and genes were observed to be significantly correlated. CONCLUSION Our study findings showed variation in telomere-associated genes and suggest the participation of these genes as prognostic markers in MM. These results all together highlight the evaluation and role of genes involved in telomeric alteration and TL, providing the opportunity to study new therapeutic approaches in patients with MM.
Collapse
Affiliation(s)
- Akanksha A Kalal
- KSHEMA Center for Genetic Services, KS Hegde Medical Academy, NITTE (Deemed to Be University), Mangaluru, Karnataka, India
| | - Reshma A Shetty
- KSHEMA Center for Genetic Services, KS Hegde Medical Academy, NITTE (Deemed to Be University), Mangaluru, Karnataka, India
| | - Akshay Bairapura Manjappa
- Department of Anatomy, KS Hegde Medical Academy, NITTE (Deemed to Be University), Mangaluru, Karnataka, India
| | - Nagaraj V Kulkarni
- Chromosome and Plasmid segregation Lab, Department of Bioscience and Bioengineering, Indian Institute of Technology, Bombay, Maharashtra, India
| | - Prashanth Shetty
- KSHEMA Center for Genetic Services, KS Hegde Medical Academy, NITTE (Deemed to Be University), Mangaluru, Karnataka, India.
| |
Collapse
|
4
|
Gupta N, Nafees S, Rahman AU, Akhtar J, Khan AA, Sharma A. Itrifal-e-Aftimoon potentiates imatinib-induced anti-leukemic effect by influencing FAK/STAT/Akt/ERK signalling pathways against chronic myeloid leukaemia in vitro. J Pharm Pharmacol 2022; 74:1330-1341. [PMID: 35808985 DOI: 10.1093/jpp/rgac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/03/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Limited treatment options are available for advanced stages of chronic myeloid leukaemia (CML). Moreover, patients' relapse after a short remission period, which prompts them to identify a potent drug with the least toxicity. An Unani herbal formulation, Itrifal-e-Aftimoon (IEA) is used for certain neurological disorders, however, its antitumor potential has not been reported yet in any malignancy, including CML. METHODS The aqueous extract of IEA was characterized by HPLC/LC-MS and used alone or in combination with standard drug, imatinib in CML cell lines (K562, KU812) in vitro to assess its effect on cancer-associated parameters such as cytotoxicity, cell cycle, apoptosis, oxidative stress, inflammation, angiogenesis, and certain signalling pathways. RESULTS LC-MS characterization of IEA showed the presence of antitumor compounds including catechin and caffeic acid. Treatment with IEA caused cytotoxicity and arrested cells in the sub-G0/G1 phase. Subsequent assays confirmed apoptosis-mediated cell death with mitochondrial membrane depolarization and alleviation of oxidative stress. IEA abrogates IL-6, VEGF, angiopoietin-2, and alters Th1/Th2 cytokines. IEA potentiated the effect of imatinib even at lower doses by affecting FAK/STAT/Akt/ERK pathways. CONCLUSION IEA possesses antitumor potential against CML and increases the efficacy of imatinib when used in combination, suggesting utilization of IEA as an adjuvant therapy for better management of CML in the future.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sana Nafees
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Aziz Ur Rahman
- Department of Ilmul Saidla, Aligarh Muslim University, Aligarh, India
| | - Jamal Akhtar
- Central Council for Research in Unani Medicine, New Delhi, India
| | - Asim Ali Khan
- Central Council for Research in Unani Medicine, New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
5
|
Anti-tumor efficacy of Habb-e-Asgandh as an adjuvant therapy in chronic myelogenous leukemia in vitro. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Ansari MA, Khan FB, Safdari HA, Almatroudi A, Alzohairy MA, Safdari M, Amirizadeh M, Rehman S, Equbal MJ, Hoque M. Prospective therapeutic potential of Tanshinone IIA: An updated overview. Pharmacol Res 2020; 164:105364. [PMID: 33285229 DOI: 10.1016/j.phrs.2020.105364] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 01/03/2023]
Abstract
In the past decades, the branch of complementary and alternative medicine based therapeutics has gained considerable attention worldwide. Pharmacological efficacy of various traditional medicinal plants, their products and/or product derivatives have been explored on an increasing scale. Tanshinone IIA (Tan IIA) is a pharmacologically active lipophilic component of Salvia miltiorrhiza extract. Tan IIA shares a history of high repute in Traditional Chinese Medicine. Reckoning with these, the present review collates the pharmacological properties of Tan IIA with a special emphasis on its therapeutic potential against diverse diseases including cardiovascular diseases, cerebrovascular diseases, cancer, diabetes, obesity and neurogenerative diseases. Further, possible applications of various therapeutic preparations of Tan IIA were discussed with special emphasis on nano-based drug delivery formulations. Considering the tremendous advancement in the field of nanomedicine and the therapeutic potential of Tan IIA, the convergence of these two aspects can be foreseen with great promise in clinical application.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1881, Dammam 31441, Saudi Arabia
| | - Farheen Badrealam Khan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Haaris Ahsan Safdari
- New Technology Center, University of Warsaw, Stefana Banacha 2c, 02-097 Warszawa, Poland
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammadreza Safdari
- Imam Ali Hospital, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehran Amirizadeh
- Department of Pharmacotherapy, Faculty of Pharmacy, University of Medical Sciences, Khorramabad, Lorestan, Iran
| | - Suriya Rehman
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1881, Dammam 31441, Saudi Arabia
| | - Mohammad Javed Equbal
- Biomedical Institute for Regenerative Research, Texas A&M University Commerce, Commerce, TX 75429, United States.
| | - Mehboob Hoque
- Department of Biological Sciences, Aliah University, Kolkata 700 160, India.
| |
Collapse
|
7
|
Gupta N, Sharma A, Sharma A. Emerging biomarkers in Multiple Myeloma: A review. Clin Chim Acta 2019; 503:45-53. [PMID: 31901479 DOI: 10.1016/j.cca.2019.12.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
Multiple Myeloma (MM) is the second most common hematological malignancy after non-Hodgkin lymphoma and is manifested by uncontrolled proliferation and accumulation of abnormal plasma cells in the bone marrow (BM). The incidence along with deaths associated with MM is on rise due to lack of an effective diagnosis at an early stage. The identification of MM decades ago marks the adoption of certain conventional markers such as plasma cell percentage in BM, serum protein electrophoresis for M-band and urinary Bence-Jones protein. This was then followed by utilization of β2 microglobulin and serum albumin for determining the staging of MM. The need for a better diagnostic or prognostic marker prompts researchers and hence, certain novel markers have been tested which includes extracellular matrix proteins, angiogenic factors, telomeres and telomerase along with the immune markers. Nowadays, proteomic and genomic studies are being performed to identify novel diagnostic and/or prognostic markers for MM. Followed by this, comes the emerging concept of liquid biopsy which allows easy and non-invasive detection of the disease. The liquid biopsy comprises of circulatory tumor cells along with the nucleic acids (microRNAs and cell-free DNA) released from the tumor cells in peripheral circulation which could be a true representation of BM. This review, hence, summarizes the emerging biomarkers involved in the diagnosis and prognosis of MM.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Aparna Sharma
- Department of Medical Oncology, Dr. B.R Ambedkar IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
8
|
Distinct Nuclear Organization of Telomeresand Centromeres in Monoclonal Gammopathyof Undetermined Significance and Multiple Myeloma. Cells 2019; 8:cells8070723. [PMID: 31311193 PMCID: PMC6678424 DOI: 10.3390/cells8070723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
Both multiple myeloma (MM) and its precursor state of monoclonal gammopathy of undetermined significance (MGUS) are characterized by an infiltration of plasma cells into the bone marrow, but the mechanisms underlying the disease progression remain poorly understood. Previous research has indicated that 3D nuclear telomeric and centromeric organization may represent important structural indicators for numerous malignancies. Here we corroborate with previously noted differences in the 3D telomeric architecture and report that modifications in the nuclear distribution of centromeres may serve as a novel structural marker with potential to distinguish MM from MGUS. Our findings improve the current characterization of the two disease stages, providing two structural indicators that may become altered in the progression of MGUS to MM.
Collapse
|