1
|
Karaman EF, Abudayyak M, Guler ZR, Ozden S. Effects of zearalenone on endoplasmic reticulum stress-induced apoptosis via global and gene-specific histone modifications and miRNA-mediated p53-signaling pathway in HEK-293 cells. Chem Biol Interact 2025; 418:111585. [PMID: 40447175 DOI: 10.1016/j.cbi.2025.111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/11/2025] [Accepted: 05/26/2025] [Indexed: 06/02/2025]
Abstract
Zearalenone (ZEA), a non-steroidal estrogenic mycotoxin produced by Fusarium species, is well-known for its potent estrogen-like effects, which can lead to reproductive toxicity and toxicity in various organs. Although several studies have reported its nephrotoxic effects, the molecular mechanisms underlying ZEA-induced toxicity remain poorly understood. The present study investigates the effects of ZEA on the expression levels of apoptosis and endoplasmic reticulum (ER) stress-related genes, as well as selected chromatin-modifying enzyme coding genes, miRNA profiles associated with cancer pathways, and global histone modifications (H3K4me3, H3K9me3, H3K27me3, and H3K9ac) in human embryonic kidney epithelial (HEK-293) cells exposed to 1-50 μM ZEA for 24 h. The results indicated that 10 and 50 μM ZEA induced apoptosis through upregulating Bcl-2, CASP3, CASP9, and p53. Alterations in the expression levels of ER stress-related genes, such as GRP78, PERK, ATF4, IRE2, CHOP, and eIF2α, could contribute to ZEA-induced toxicity. No significant changes were observed in the expression levels of chromatin-modifying enzyme coding genes, including EZH2, G9a, HAT1, RIZ1, SETD1A, and SIRT1, DNA methylation-related genes such as DNMT1, DNMT3A, and DNMT3B. However, SETD8 and Suv39h1 exhibited significant changes at 50 μM of ZEA. Moreover, global histone modification levels significantly decreased at 50 μM ZEA exposure for 24 h. Chromatin immunoprecipitation (ChIP) results revealed significant changes in H3K27me3, H3K9me3, and H3K9ac modifications on the ATF4, CHOP, Bcl-2, and p53 genes following ZEA exposure. miRNA array analysis showed notable and significant reductions in the expression levels of several miRNAs. The results obtained from this comprehensive study are expected to make a significant contribution to the elucidation of ZEA toxicity.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, Topkapi, 34015, Istanbul, Turkey
| | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, 34116, Istanbul, Turkey
| | - Zeynep Rana Guler
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, 34116, Istanbul, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, 34116, Istanbul, Turkey.
| |
Collapse
|
2
|
Doğan B, Pirim D, Işık Ö, Evrensel T. Candidate Biomarkers Associated With Circulating Tumor Cell Status in Metastatic Colorectal Cancer. J Clin Lab Anal 2025; 39:e70013. [PMID: 40066900 PMCID: PMC11981952 DOI: 10.1002/jcla.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) ranks as the third most prevalent cancer worldwide. Recent studies suggest the promising potential of microRNAs (miRNA) in predicting the status of circulating tumor cells (CTC), and their combined analyses could pave the way for significant advancements in assessing the risk of metastatic cancer. Here, we investigate the circulating miRNA signatures associated with CTC status in metastatic CRC (mCRC). METHODS The CTC status of mCRC patients was assessed using AdnaTest ColonCancer technology, which detects tumor cells using an immunomagnetic approach and characterizes them based on colon-specific surface markers. The miRNA profiles were analyzed using the Agilent miRNA microarray in 8 CTC-positive, 8 CTC-negative, and eight healthy individuals. The functional implications of dysregulated miRNAs and their interactions with target mRNAs, TFs, and lncRNAs were determined through a comprehensive in silico analysis. Candidate miRNAs that were differentially expressed in CTC-positive and CTC-negative groups, which have prior evidence for their role in CRC biology, were validated using qPCR. RESULTS We identified two groups of dysregulated miRNAs associated with CTC status and multiple candidate biomarkers in suggested miRNA regulatory networks. Three miRNAs (hsa-miR-199a-5p, hsa-miR-326, hsa-miR-500b-5p), which were downregulated in the CTC-positive group compared to the CTC-negative group, were confirmed by qPCR and prioritized as candidate predictors of CTC status in mCRC. CONCLUSION Our findings suggest biomarker candidates that can be used to predict CTC status in individuals with mCRC. This might also provide new insights into new translational medicine applications in the management of mCRC through miRNA-based CRC-associated CTC detection.
Collapse
Affiliation(s)
- Berkcan Doğan
- Department of Translational Medicine, Institute of Health SciencesBursa Uludag UniversityBursaTürkiye
- Faculty of Medicine, Department of Medical GeneticsBursa Uludag UniversityBursaTürkiye
| | - Dilek Pirim
- Department of Translational Medicine, Institute of Health SciencesBursa Uludag UniversityBursaTürkiye
- Faculty of Arts and Science, Department of Molecular Biology and GeneticsBursa Uludag UniversityBursaTürkiye
| | - Özgen Işık
- Faculty of Medicine, Department of General SurgeryBursa Uludag UniversityBursaTürkiye
| | - Türkkan Evrensel
- Department of Translational Medicine, Institute of Health SciencesBursa Uludag UniversityBursaTürkiye
- Faculty of Medicine, Department of Medical OncologyBursa Uludag UniversityBursaTürkiye
| |
Collapse
|
3
|
Li Q, Cheng J, Qin D, Xiao S, Yao C. Exosomal miR-92b-5p regulates N4BP1 to enhance PTEN mono-ubiquitination in doxorubicin-resistant AML. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:16. [PMID: 40201312 PMCID: PMC11977356 DOI: 10.20517/cdr.2024.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/04/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Aim: Doxorubicin, pivotal for acute myeloid leukemia (AML) treatment, often succumbs to resistance, impeding therapeutic success. Although exosomal transfer is linked to chemoresistance, the detailed role of exosomal miRNAs in doxorubicin resistance remains incompletely understood. Methods: We employed miRNA sequencing to delineate the profile of exosomal miRNAs in doxorubicin-resistant K562/DOX cells and AML patients. Subsequently, qPCR was utilized to scrutinize the expression of exosomal miR-92b-5p in these resistant cells and AML patients. A dual-luciferase reporter assay was conducted to elucidate the direct binding of miR-92b-5p to NEDD4 binding protein 1 (N4BP1). Furthermore, interactions between N4BP1 and NEDD4, as well as between NEDD4 and PTEN, were investigated by co-immunoprecipitation (Co-IP). Meanwhile, the ubiquitination of PTEN was also examined by Co-IP. Western blot analysis was applied to assess the expression levels of N4BP1, NEDD4, PTEN, RAD51, and proteins associated with the PI3K-AKT-mTOR pathway. Gain- and loss-of-function studies were conducted to ascertain the functional role of miR-92b-5p in doxorubicin resistance by using miR-92b-5p-mimic and miR-92b-5p-inhibitor transfections. Results: Our study found exosomal miR-92b-5p was upregulated both in doxorubicin-resistant cells and AML patients. Moreover, miR-92b-5p targets N4BP1, promoting NEDD4-mediated mono-ubiquitination of PTEN. This alters PTEN's subcellular localization, promoting nuclear PTEN and reducing cytoplasmic PTEN, which in turn leads to increased RAD51 for DNA repair and activation of the PI3K-AKT-mTOR pathway for cell proliferation, contributing to doxorubicin resistance. Conclusion: Our study reveals a novel mechanism of doxorubicin resistance mediated by exosomal miR-92b-5p and provides potential therapeutic targets for overcoming drug resistance in AML.
Collapse
Affiliation(s)
- Qianyuan Li
- Department of General Medicine, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Jie Cheng
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Danni Qin
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Sheng Xiao
- Department of Pathology, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Chenjiao Yao
- Department of General Medicine, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Haikou 570105, Hainan, China
| |
Collapse
|
4
|
Ye G, Zhang J, Peng J, Zhou Z, Wang W, Yao S. CircSOD2: Disruption of intestinal mucosal barrier function in ulcerative colitis by regulating the miR-378g/Snail1 axis. J Gastroenterol Hepatol 2024; 39:1299-1309. [PMID: 38646884 DOI: 10.1111/jgh.16550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/21/2024] [Accepted: 03/09/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND AND AIM Circular RNA (circRNA) has been found to mediate ulcerative colitis (UC) progression by regulating intestinal mucosal barrier function. However, the role of circSOD2 in UC process and its underlying molecular mechanism still need to be further elucidated. METHODS Lipopolysaccharide (LPS)-induced Caco2 cells were used to mimic UC cell models. CircSOD2, miR-378g, and Snail1 levels were determined by quantitative real-time PCR. Cell viability was detected using MTT assay, and inflammatory cytokine levels were measured using ELISA. The intestinal mucosal barrier function was evaluated by testing transepithelial electrical resistance and fluorescein isothiocyanate (FITC)-dextran permeability. Snail1 and tight junction-related markers (Zo-1 and Claudin2) protein levels were examined using western blot. The interaction between miR-378g and circSOD2 or Snail1 was confirmed by dual-luciferase reporter assay. Dextran sulfate sodium (DSS) was used to induce UC rat models in vivo. RESULTS CircSOD2 was overexpressed in UC patients, and its knockdown significantly increased cell viability, transepithelial electrical resistance, and tight junction-related protein expression, while reduced inflammation cytokine levels and the permeability of FITC-dextran in LPS-induced Caco2 cells. In terms of mechanism, circSOD2 sponged miR-378g to positively regulate Snail1 expression. MiR-378g inhibitor reversed the effect of circSOD2 knockdown on intestinal mucosal barrier injury and Snail1 expression in LPS-induced Caco2 cells. In DSS-induced UC rat models, circSOD2 knockdown also could repair the intestinal mucosal barrier injury through regulating miR-378g/Snail1 axis. CONCLUSION CircSOD2 could destroy intestinal mucosal barrier function in LPS-induced Caco2 cells and DSS-induced UC rats by miR-378g/Snail1 axis.
Collapse
Affiliation(s)
- Guannan Ye
- Department of Gastroenterology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiayi Zhang
- Department of Gastroenterology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jin Peng
- Department of Gastroenterology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhen Zhou
- Department of Gastroenterology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Weining Wang
- Department of Gastroenterology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Si Yao
- Department of Gastroenterology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
5
|
Guo S, Huang B, You Z, Luo Z, Xu D, Zhang J, Lin J. FOXD2-AS1 promotes malignant cell behavior in oral squamous cell carcinoma via the miR-378 g/CRABP2 axis. BMC Oral Health 2024; 24:625. [PMID: 38807101 PMCID: PMC11134640 DOI: 10.1186/s12903-024-04388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Oral squamous cell cancer (OSCC) is a prevalent malignancy in oral cavity, accounting for nearly 90% of oral malignancies. It ranks sixth among the most common types of cancer worldwide and is responsible for approximately 145,000 deaths each year. It is widely accepted that noncoding RNAs participate cancer development in competitive regulatory interaction, knowing as competing endogenous RNA (ceRNA) network, whereby long non-coding RNA (lncRNA) function as decoys of microRNAs to regulate gene expression. LncRNA FOXD2-AS1 was reported to exert an oncogenic role in OSCC. Nevertheless, the ceRNA network mediated by FOXD2-AS1 was not investigated yet. This study aimed to explore the effect of FOXD2-AS1 on OSCC cell process and the underlying ceRNA mechanism. METHODS FOXD2-AS1 expression in OSCC cells were determined via reverse transcription and quantitative polymerase chain reaction. Short hairpin RNA targeting FOXD2-AS1 was transfected into OSCC cells to silence FOXD2-AS1 expression. Then, loss-of-function experiments (n = 3 each assay) were performed to measure cell proliferation, apoptosis, migration, and invasion using colony formation, TdT-mediated dUTP Nick-End Labeling, wound healing and Transwell assays, respectively. RNA binding relation was verified by RNA immunoprecipitation and luciferase reporter assays. Rescue experiments were designed to validate whether FOXD2-AS1 affects cell behavior via the gene cellular retinoic acid binding protein 2 (CRABP2). Statistics were processed by GraphPad Prism 6.0 Software and SPSS software. RESULTS FOXD2-AS1 was significantly upregulated in Cal27 and SCC9 cells (6.8 and 6.4 folds). In response to FOXD2-AS1 knockout, OSCC cell proliferation, migration and invasion were suppressed (approximately 50% decrease) while OSCC cell apoptosis was enhanced (more than two-fold increase). FOXD2-AS1 interacted with miR-378 g to alter CRABP2 expression. CRABP2 upregulation partly rescued (*p < 0.05, **p < 0.01, ***p < 0.001) the inhibitory impact of FOXD2-AS1 depletion on malignant characteristics of OSCC cells. CONCLUSION FOXD2-AS1 enhances OSCC malignant cell behaviors by interacting with miR-378 g to regulate CRABP2 expression.
Collapse
Affiliation(s)
- Shaoyong Guo
- Department of Stomatology, The First Hospital of Putian City, 449 Nanmen West Road, Chengxiang District, Putian City, Putian, 351100, China.
| | - Bixia Huang
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, 351100, China
| | - Zhisong You
- Department of Stomatology, The First Hospital of Putian City, 449 Nanmen West Road, Chengxiang District, Putian City, Putian, 351100, China
| | - Zhenzhi Luo
- Department of Stomatology, The First Hospital of Putian City, 449 Nanmen West Road, Chengxiang District, Putian City, Putian, 351100, China
| | - Da Xu
- Department of Stomatology, The First Hospital of Putian City, 449 Nanmen West Road, Chengxiang District, Putian City, Putian, 351100, China
| | - Jieru Zhang
- Department of Stomatology, The First Hospital of Putian City, 449 Nanmen West Road, Chengxiang District, Putian City, Putian, 351100, China
| | - Jialin Lin
- Department of Stomatology, The First Hospital of Putian City, 449 Nanmen West Road, Chengxiang District, Putian City, Putian, 351100, China
| |
Collapse
|
6
|
Li Y, Jiang L, Yu Z, Jiang C, Zhang F, Jin S. SPRi/SERS dual-mode biosensor based on ployA-DNA/ miRNA/AuNPs-enhanced probe sandwich structure for the detection of multiple miRNA biomarkers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123664. [PMID: 38029598 DOI: 10.1016/j.saa.2023.123664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
MicroRNA (miRNA) has broad application prospects in the early detection of various cancers. In this work, a SPRi/SERS dual-mode biosensor was developed on the same gold chip by AuNPs as the reinforcing medium. High throughput and sensitivity detection of three typical cervical cancer markers miRNA21, miRNA124 and miRNA143 were achieved based on the sandwich structure of polyA blocks-DNA capture probe/target miRNA/AuNPs-assistant probe or SERS nanoprobes. AuNPs greatly improved the SPR response due to mass increase and more sensitive refractive index changes. Meanwhile, due to the LSPR effect of AuNPs, the signal of SERS nanoprobe can be amplified. The miRNAs were detected in serum to verify its practicality. SPRi achieved detection of three miRNAs simultaneously. LODs were 6.3 fM, 5.3 fM and 4.6 fM, respectively, and wide dynamic response range of 500 pM-10 nM. While SERS assay ensured high sensitivity with LODs as low as 1 fM, 0.8 fM and 1.2 fM, respectively, and with the recoveries in the range of 90.0 %-100.2 %. The redundant detection signals of the two modes can provide more reliable data to prevent false positive or false negative detection, and have great application prospects in detection of cancer-related nucleic acids in early stage of disease.
Collapse
Affiliation(s)
- Yifan Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Li Jiang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Zizhen Yu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Cailing Jiang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Fei Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shangzhong Jin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
7
|
Chen Z, Ge C, Zhu X, Sun P, Sun Z, Derkach T, Zhou M, Wang Y, Luan M. A novel nanoprobe for visually investigating the controversial role of miRNA-34a as an oncogene or tumor suppressor in cancer cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:667-675. [PMID: 38230518 DOI: 10.1039/d3ay02270f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
MiRNA-targeted therapy has become a hot topic in current cancer research. The key to this treatment strategy is to clarify the specific role of miRNA in cancer. However, the roles of some miRNAs acting as oncogenic or tumor suppressors are still controversial, which are influenced by different tumor types, even in the same cancer type. Hence, we designed a novel fluorescent nanoprobe based on polydopamine nanoparticles (PDA NPs) for simultaneously detecting caspase-3 and miRNA-34a within living cells. The specific role of miRNA-34a in different cancer cells could be further identified by studying the expression alterations of caspase-3 and miRNA-34a. Confocal imaging indicated that miRNA-34a indeed acted as a tumor suppressor in anticancer drug-treated MCF-7 and HeLa cells, where the effect of miRNA-34a remains controversial. The designed nanoprobe can offer a promising approach to ascertain the oncogenic or tumor-suppressing role of miRNA in different cancer cells with a simple visualization method, which has valuable implications for exploring the practicability of precision therapy focused on miRNA and evaluating the efficacy of new miRNA-targeted anticancer medications.
Collapse
Affiliation(s)
- Zhe Chen
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chuandong Ge
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xiaokai Zhu
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Ping Sun
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zeyuan Sun
- Kyiv National University of Technologies and Design, 01011, Kyiv, Ukraine
| | - Tetiana Derkach
- Kyiv National University of Technologies and Design, 01011, Kyiv, Ukraine
| | - Mingyang Zhou
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yaoguang Wang
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mingming Luan
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
8
|
Xie GB, Yu JR, Lin ZY, Gu GS, Chen RB, Xu HJ, Liu ZG. Prediction of miRNA-disease associations based on strengthened hypergraph convolutional autoencoder. Comput Biol Chem 2024; 108:107992. [PMID: 38056378 DOI: 10.1016/j.compbiolchem.2023.107992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/04/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Most existing graph neural network-based methods for predicting miRNA-disease associations rely on initial association matrices to pass messages, but the sparsity of these matrices greatly limits performance. To address this issue and predict potential associations between miRNAs and diseases, we propose a method called strengthened hypergraph convolutional autoencoder (SHGAE). SHGAE leverages multiple layers of strengthened hypergraph neural networks (SHGNN) to obtain robust node embeddings. Within SHGNN, we design a strengthened hypergraph convolutional network module (SHGCN) that enhances original graph associations and reduces matrix sparsity. Additionally, SHGCN expands node receptive fields by utilizing hyperedge features as intermediaries to obtain high-order neighbor embeddings. To improve performance, we also incorporate attention-based fusion of self-embeddings and SHGCN embeddings. SHGAE predicts potential miRNA-disease associations using a multilayer perceptron as the decoder. Across multiple metrics, SHGAE outperforms other state-of-the-art methods in five-fold cross-validation. Furthermore, we evaluate SHGAE on colon and lung neoplasms cases to demonstrate its ability to predict potential associations. Notably, SHGAE also performs well in the analysis of gastric neoplasms without miRNA associations.
Collapse
Affiliation(s)
- Guo-Bo Xie
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Jun-Rui Yu
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Zhi-Yi Lin
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Guo-Sheng Gu
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Rui-Bin Chen
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Hao-Jie Xu
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Zhen-Guo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
9
|
Niu M, Wang C, Chen Y, Zou Q, Xu L. Identification, characterization and expression analysis of circRNA encoded by SARS-CoV-1 and SARS-CoV-2. Brief Bioinform 2024; 25:bbad537. [PMID: 38279648 PMCID: PMC10818166 DOI: 10.1093/bib/bbad537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 12/22/2023] [Indexed: 01/28/2024] Open
Abstract
Virus-encoded circular RNA (circRNA) participates in the immune response to viral infection, affects the human immune system, and can be used as a target for precision therapy and tumor biomarker. The coronaviruses SARS-CoV-1 and SARS-CoV-2 (SARS-CoV-1/2) that have emerged in recent years are highly contagious and have high mortality rates. In coronaviruses, little is known about the circRNA encoded by the SARS-CoV-1/2. Therefore, this study explores whether SARS-CoV-1/2 encodes circRNA and characteristics and functions of circRNA. Based on RNA-seq data of SARS-CoV-1 and SARS-CoV-2 infections, we used circRNA identification tools (circRNA_finder, find_circ and CIRI2) to identify circRNAs. The number of circRNAs encoded by SARS-CoV-1 and SARS-CoV-2 was identified as 151 and 470, respectively. It can be found that SARS-CoV-2 shows more prominent circRNA encoding ability than SARS-CoV-1. Expression analysis showed that only a few circRNAs encoded by SARS-CoV-1/2 showed high expression levels, and the positive strand produced more abundant circRNAs. Then, based on the identified SARS-CoV-1/2-encoded circRNAs, we performed circRNA identification and characterization using the previously developed CirRNAPL. Finally, target gene prediction and functional enrichment analysis were performed. It was found that viral circRNA is closely related to cancer and has a potential role in regulating host cell functions. This study studied the characteristics and functions of viral circRNA encoded by coronavirus SARS-CoV-1/2, providing a valuable resource for further research on the function and molecular mechanism of coronavirus circRNA.
Collapse
Affiliation(s)
- Mengting Niu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunyu Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
| | - Yaojia Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No.4 Block 2 North Jianshe Road, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No.4 Block 2 North Jianshe Road, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| |
Collapse
|
10
|
Xu W, Chen S, Jiang Q, He J, Zhang F, Wang Z, Ruan C, Shi B. LUM as a novel prognostic marker and its correlation with immune infiltration in gastric cancer: a study based on immunohistochemical analysis and bioinformatics. BMC Gastroenterol 2023; 23:455. [PMID: 38129820 PMCID: PMC10740220 DOI: 10.1186/s12876-023-03075-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is considered the sixth highly prevailing malignant neoplasm and is ranked third in terms of cancer mortality rates. To enable an early and efficient diagnosis of GC, it is important to detect the fundamental processes involved in the oncogenesis and progression of gastric malignancy. The understanding of molecular signaling pathways can facilitate the development of more effective therapeutic strategies for GC patients. METHODS The screening of genes that exhibited differential expression in early and advanced GC was performed utilizing the Gene Expression Omnibus databases (GSE3438). Based on this, the protein and protein interaction network was constructed to screen for hub genes. The resulting list of hub genes was evaluated with bioinformatic analysis and selected genes were validated the protein expression by immunohistochemistry (IHC). Finally, a competing endogenous RNA network of GC was constructed. RESULTS The three genes (ITGB1, LUM, and COL5A2) overexpressed in both early and advanced GC were identified for the first time. Their upregulation has been linked with worse overall survival (OS) time in patients with GC. Only LUM was identified as an independent risk factor for OS among GC patients by means of additional analysis. IHC results demonstrated that the expression of LUM protein was increased in GC tissue, and was positively associated with the pathological T stage. LUM expression can effectively differentiate tumorous tissue from normal tissue (area under the curve = 0.743). The area under 1-, 3-, and 5-year survival relative operating characteristics were greater than 0.6. Biological function enrichment analyses suggested that the genes related to LUM expression were involved in extracellular matrix development-related pathways and enriched in several cancer-related pathways. LUM affects the infiltration degree of cells linked to the immune system in the tumor microenvironment. In GC progression, the AC117386.2/hsa-miR-378c/LUM regulatory axis was also identified. CONCLUSION Collectively, a thorough bioinformatics analysis was carried out and an AC117386.2/hsa-miR-378c/LUM regulatory axis in the stomach adenocarcinoma dataset was detected. These findings should serve as a guide for future experimental investigations and warrant confirmation from larger studies.
Collapse
Affiliation(s)
- Wu Xu
- Department of Medical Oncology, Longyan People's Hospital, No.31 Denggao West Road, Longyan, Fujian, 364000, People's Republic of China
| | - Shasha Chen
- Department of Pathology, Longyan Second Hospital, No.8 Shuangyang West Road, Longyan, Fujian, 364000, People's Republic of China
| | - Qiuju Jiang
- Department of Pathology, Longyan Second Hospital, No.8 Shuangyang West Road, Longyan, Fujian, 364000, People's Republic of China
| | - Jinlan He
- Department of Medical Oncology, Longyan People's Hospital, No.31 Denggao West Road, Longyan, Fujian, 364000, People's Republic of China
| | - Feifei Zhang
- Department of Medical Oncology, Longyan People's Hospital, No.31 Denggao West Road, Longyan, Fujian, 364000, People's Republic of China
| | - Zhuying Wang
- Department of Medical Oncology, Longyan People's Hospital, No.31 Denggao West Road, Longyan, Fujian, 364000, People's Republic of China
| | - Caishun Ruan
- Department of Medical Oncology, Longyan People's Hospital, No.31 Denggao West Road, Longyan, Fujian, 364000, People's Republic of China
| | - Bin Shi
- Department of Medical Oncology, Longyan People's Hospital, No.31 Denggao West Road, Longyan, Fujian, 364000, People's Republic of China.
| |
Collapse
|
11
|
Kou Q, Yang J, Wang L, Zhao H, Zhang L, Su X. Enhanced DNA Entropy-Driven Circuit by Locked Nucleic Acids and Simulation-Guided Localization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47415-47424. [PMID: 37773989 DOI: 10.1021/acsami.3c11189] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Signal amplification methods based on DNA molecular interactions are promising tools for detecting various biomarkers in low abundance. The entropy-driven circuit (EDC), as an enzyme-free signal amplification method, has been used in detecting and imaging a variety of biomarkers. The localization strategy can effectively increase the local concentration of the DNA reaction modules to improve the signal amplification effect. However, the localization strategy may also amplify the leak reaction of the EDC, and effective signal amplification can be limited by the unclear structure-function relationship. Herein, we utilized locked nucleic acid (LNA) modification to enhance the stability of the localized entropy-driven circuit (LEDC), which suppressed a 94.6% leak signal. The coarse-grained model molecular simulation was used to guide the structure design of the LEDC, and the influence of critical factors such as the localized distance and spacer length was analyzed at the molecular level to obtain the best reaction performance. The sensitivities of miR-21 and miR-141 detected by a simulation-guided optimal LEDC probe were 17.45 and 65 pM, 1345 and 521 times higher than free-EDC, respectively. The LEDC was further employed for the fluorescence imaging of miRNA in cancer cells, showing excellent specificity and sensitivity. This work utilizes LNA and molecular simulations to comprehensively improve the performance of a localized DNA signal amplification circuit, providing an advanced DNA probe design strategy for biosensing and imaging as well as valuable information for the designers of DNA-based probes.
Collapse
Affiliation(s)
- Qiaoni Kou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiarui Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lei Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyang Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
12
|
Eid M, Hafez H, El-Shaqanqery HE, Samir O, El Nadi I, Elwakeel M, Salama A, Younes A, Ahmed G, Yasser N, Kieran MW, Sayed A, Haddad AE. Predictive value of micro-RNA expression profiling in pediatric desmoid fibromatosis. Acta Oncol 2023; 62:1014-1020. [PMID: 37493630 DOI: 10.1080/0284186x.2023.2238881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 06/07/2023] [Indexed: 07/27/2023]
Affiliation(s)
- Mohamed Eid
- Department of Pediatric Oncology, Children's Cancer Hospital Egypt (CCHE 57357), Cairo, Egypt
| | - Hanafy Hafez
- Department of Pediatric Oncology, Children's Cancer Hospital Egypt (CCHE 57357), Cairo, Egypt
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hend E El-Shaqanqery
- Genomics Department, Children's Cancer Hospital Egypt (CCHE 57357), Cairo, Egypt
| | - Omar Samir
- Genomics Department, Children's Cancer Hospital Egypt (CCHE 57357), Cairo, Egypt
| | - Inas El Nadi
- Department of Pediatric Oncology, Children's Cancer Hospital Egypt (CCHE 57357), Cairo, Egypt
- Department of Medical Oncology, Beni-Swef University, Cairo, Egypt
| | - Madeeha Elwakeel
- Department of Diagnostic Radiology, Children's Cancer Hospital Egypt (CCHE 57357), National Cancer Institute Cairo University, Cairo, Egypt
| | - Asmaa Salama
- Department of Surgical Pathology, National Cancer Institute, Children's Cancer Hospital Egypt (CCHE 57357), Cairo University, Cairo, Egypt
| | - Alaa Younes
- Surgical Oncology Department, Children's Cancer Hospital Egypt (CCHE 57357), National Cancer Institute, Cairo University, Cairo, Egypt
| | - Gehad Ahmed
- Surgical Oncology Department, Surgery Department, Children's Cancer Hospital, Egypt (CCHE), Helwan University, Cairo, Egypt
| | - Nouran Yasser
- Biostatistician - Clinical Research Department, Children's Cancer Hospital Egypt (CCHE), Cairo, Egypt
| | - Mark W Kieran
- Department of Pediatric Oncology, Children's Cancer Hospital Egypt (CCHE 57357), Cairo, Egypt
| | - Ahmed Sayed
- Genomics Department, Children's Cancer Hospital Egypt (CCHE 57357), Cairo, Egypt
| | - Alaa El Haddad
- Department of Pediatric Oncology, Children's Cancer Hospital Egypt (CCHE 57357), Cairo, Egypt
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Hamidi F, Gilani N, Arabi Belaghi R, Yaghoobi H, Babaei E, Sarbakhsh P, Malakouti J. Identifying potential circulating miRNA biomarkers for the diagnosis and prediction of ovarian cancer using machine-learning approach: application of Boruta. Front Digit Health 2023; 5:1187578. [PMID: 37621964 PMCID: PMC10445490 DOI: 10.3389/fdgth.2023.1187578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction In gynecologic oncology, ovarian cancer is a great clinical challenge. Because of the lack of typical symptoms and effective biomarkers for noninvasive screening, most patients develop advanced-stage ovarian cancer by the time of diagnosis. MicroRNAs (miRNAs) are a type of non-coding RNA molecule that has been linked to human cancers. Specifying diagnostic biomarkers to determine non-cancer and cancer samples is difficult. Methods By using Boruta, a novel random forest-based feature selection in the machine-learning techniques, we aimed to identify biomarkers associated with ovarian cancer using cancerous and non-cancer samples from the Gene Expression Omnibus (GEO) database: GSE106817. In this study, we used two independent GEO data sets as external validation, including GSE113486 and GSE113740. We utilized five state-of-the-art machine-learning algorithms for classification: logistic regression, random forest, decision trees, artificial neural networks, and XGBoost. Results Four models discovered in GSE113486 had an AUC of 100%, three in GSE113740 with AUC of over 94%, and four in GSE113486 with AUC of over 94%. We identified 10 miRNAs to distinguish ovarian cancer cases from normal controls: hsa-miR-1290, hsa-miR-1233-5p, hsa-miR-1914-5p, hsa-miR-1469, hsa-miR-4675, hsa-miR-1228-5p, hsa-miR-3184-5p, hsa-miR-6784-5p, hsa-miR-6800-5p, and hsa-miR-5100. Our findings suggest that miRNAs could be used as possible biomarkers for ovarian cancer screening, for possible intervention.
Collapse
Affiliation(s)
- Farzaneh Hamidi
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Gilani
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Arabi Belaghi
- Department of Mathematics, Applied Mathematics and Statistics, Uppsala University, Uppsala, Sweden
- Department of Statistics, Faculty of Mathematical Science, University of Tabriz, Tabriz, Iran
- Department of Energy and Technology, Swedish Agricultural University, Uppsala, Sweden
| | - Hanif Yaghoobi
- Department of Biological Sciences, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Biological Sciences, School of Natural Sciences, University of Tabriz, Tabriz, Iran
- Interfaculty Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Parvin Sarbakhsh
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamileh Malakouti
- Department of Midwifery, Faculty of Nursing and Midwifery, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
14
|
Avčin SL, Črepinšek K, Jenko Bizjan B, Šket R, Kovač J, Vrhovšek B, Blazina J, Blatnik O, Kordič R, Kitanovski L, Jazbec J, Debeljak M, Tesovnik T. Integrative Transcriptomic Profiling of the Wilms Tumor. Cancers (Basel) 2023; 15:3846. [PMID: 37568662 PMCID: PMC10416970 DOI: 10.3390/cancers15153846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Our study aimed to identify relevant transcriptomic biomarkers for the Wilms tumor, the most common pediatric kidney cancer, independent of the histological type and stage. Using next-generation sequencing, we analyzed the miRNA profiles of 74 kidney samples, which were divided into two independent groups: fresh frozen tissue and formalin-fixed paraffin-embedded tissue samples. Subsequent mRNA expression profiling and pathway analysis were performed to establish the interplay and potential involvement of miRNAs and mRNA in the Wilms tumor. Comparative analysis, irrespective of post-dissection tissue processing, revealed 41 differentially expressed miRNAs, with 27 miRNAs having decreased expression and 14 miRNAs having increased expression in the Wilms tumor tissue compared to healthy kidney tissue. Among global mRNA transcriptomic profile differences, cross-sectional analysis suggested a limited list of genes potentially regulated by differentially expressed miRNAs in the Wilms tumor. This study identified the comprehensive miRNA and mRNA profile of the Wilms tumor using next-generation sequencing and bioinformatics approach, providing better insights into the pathogenesis of the Wilms tumor. The identified Wilms tumor miRNAs have potential as biomarkers for the diagnosis and treatment of the Wilms tumor, regardless of histological subtype and disease stage.
Collapse
Affiliation(s)
- Simona Lucija Avčin
- Department of Haematology and Oncology, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia; (S.L.A.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Klementina Črepinšek
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Robert Šket
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Jernej Kovač
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Blaž Vrhovšek
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Jerca Blazina
- Department of Pathology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Olga Blatnik
- Department of Pathology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Kordič
- Department of Pediatric Surgery, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Lidija Kitanovski
- Department of Haematology and Oncology, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia; (S.L.A.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janez Jazbec
- Department of Haematology and Oncology, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia; (S.L.A.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maruša Debeljak
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Tine Tesovnik
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
LncRNA-PAX8-AS1 Silencing Decreases Cell Viability, Enhances Apoptosis, and Suppresses Doxorubicin Resistance in Myeloid Leukemia via the miR-378g/ERBB2 Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2295044. [PMID: 36248434 PMCID: PMC9560823 DOI: 10.1155/2022/2295044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 08/12/2022] [Indexed: 11/06/2022]
Abstract
Objective Considering the role of lncRNAs reported as regulators in acute myeloid leukemia (AML) progression, the current research aims to investigate the role of PAX8-AS1 in chemo-resistant AML. Methods Human AML cells HL60 and human doxorubicin (ADM)-resistant AML cells (HL60/ADM cells) were used to establish in vitro models of chemo-sensitive AML and refractory/recurrent AML, respectively. CCK-8 assay and flow cytometry were used to determine cell resistance to ADM, viability, and apoptosis. PAX8-AS1, miR-378g, and ERBB2 expressions in the models and/or AML patients were quantified via qRT-PCR or Western blot. The miRNA/mRNA axis targeted by PAX8-AS1 was analyzed using Starbase, TargetScan, or GEO and validated through a dual-luciferase reporter assay. The expressions of Bcl-2, Bax, and C Caspase-3 in cells were quantitated by Western blot. Results The highly expressed PAX8-AS1 was observed in AML patients and HL60 cells, which was more evident in refractory/recurrent AML patients and HL60/ADM cells. Compared with that in ADM-treated parental HL60 cells, the viability of ADM-treated HL60/ADM cells remained strong. PAX8-AS1 overexpression increased viability and Bcl-2 expression, while diminishing apoptosis, Bax, and C Caspase-3 expressions in HL60 cells. However, the abovementioned aspects were oppositely impacted by PAX8-AS1 silencing in HL60/ADM cells. PAX8-AS1 directly targeted miR-378g, whose expression pattern is opposite to that of PAX8-AS1 in AML. MiR-378g upregulation abrogated the effects of PAX8-AS1 overexpression on HL60 cells. MiR-378g downregulation offset PAX8-AS1 silencing-induced effects on HL60/ADM cells. Moreover, ERBB2 was recognized as the target of miR-378g, with a higher expression in HL60/ADM cells than in HL60 cells. Conclusion PAX8-AS1 silencing decreases cell viability, enhances apoptosis, and suppresses ADM resistance in AML via regulating the miR-378g/ERBB2 axis.
Collapse
|
16
|
circZC3HAV1 Regulates TBC1D9 to Affect the Biological Behavior of Colorectal Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7386946. [PMID: 36164444 PMCID: PMC9508460 DOI: 10.1155/2022/7386946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/24/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
Background Colorectal cancer (CRC) is one of the most frequently diagnosed cancers all over the world, which accounts for a large proportion of cancer-associated deaths. The regulatory function of circular RNAs (circRNAs) has been affirmed in diverse cancers. circ_0082628, named circRNA zinc finger CCCH-type containing antiviral 1 (circZC3HAV1), has been discovered to be significantly downregulated in CRC tissues. Nevertheless, the function and mechanism of circZC3HAV1 in CRC remain unclear. Purpose We targeted at studying the specific role and mechanism of circZC3HAV1 in CRC cells. Methods The expression of the genes was detected by quantitative real-time polymerase chain reaction (qPCR). The binding relationship among different genes was verified by mechanism assays. Functional assays were carried out to reveal the role of different RNAs in CRC cell malignant behaviors. Results circZC3HAV1 was significantly downregulated in CRC cells. circZC3HAV1 overexpression hampered CRC cell migratory and invasive abilities. As for the mechanism, circZC3HAV1 competitively bound with microRNA-146b-3p (miR-146b-3p) to enhance the expression of TBC1 domain family member 9 (TBC1D9). Rescue assays demonstrated circZC3HAV1 sponged miR-146b-3p and upregulated TBC1D9 to restrict migration and invasion of CRC cells. Conclusion circZC3HAV1 could upregulate TBC1D9 via absorbing miR-146b-3p, consequently inhibiting migratory and invasive capabilities of CRC cells.
Collapse
|
17
|
Zhang L, Cai X, Dai Y, Chen Y, Yu J, Zhou Y. Targeting the lncRNA FGD5-AS1/miR-497-5p/PD-L1 Axis Inhibits Malignant Phenotypes in Colon Cancer (CC). BIOMED RESEARCH INTERNATIONAL 2022; 2022:1133332. [PMID: 35845947 PMCID: PMC9279048 DOI: 10.1155/2022/1133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022]
Abstract
Long noncoding RNAs (lncRNAs) regulate cancer progression and drug resistance. However, the role of lncRNA FGD5-AS1 in regulating colon cancer (CC) progression is still largely unknown. Hence, this study investigated the role of lncRNA FGD5-AS1 in regulating colon cancer (CC) progression and found that lncRNA FGD5-AS1 regulated miR-497-5p/PD-L1 axis to promote cancer progression in CC cells in vitro and in vivo. Specifically, we found that lncRNA FGD5-AS1 and PD-L1 tended to be high-expressed, while miR-497-5p was low-expressed in CC tissues and cell lines compared to the normal adjacent tissues and cells. Next, we found that lncRNA FGD5-AS1 positively regulated PD-L1 in CC cells by sponging miR-497-5p. Finally, our gain- and loss-of-function experiments evidenced that the lncRNA FGD5-AS1/miR-497-5p/PD-L1 axis regulates CC progression. Functionally, the data suggested that lncRNA FGD5-AS1 positively regulated while miR-497-5p negatively modulated malignant phenotypes, including cell proliferation, viability, invasion, migration, epithelial-mesenchymal transition (EMT), and tumorigenesis in CC cells. Interestingly, the inhibiting effects of lncRNA FGD5-AS1 ablation on CC development were abrogated by both silencing miR-497-5p and upregulating PD-L1. This study found that lncRNA FGD5-AS1 sponged miR-497-5p to upregulate PD-L1, resulting in CC progression, and provided novel agents for CC diagnosis and prognosis.
Collapse
Affiliation(s)
- Lijuan Zhang
- The Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunzhou Road No. 519, Kunming City, 650100 Yunnan Province, China
| | - Xinyi Cai
- The Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunzhou Road No. 519, Kunming City, 650100 Yunnan Province, China
| | - Youguo Dai
- The Department of Gastroenterology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunzhou Road No. 519, Kunming City, 650100 Yunnan Province, China
| | - Yun Chen
- The Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunzhou Road No. 519, Kunming City, 650100 Yunnan Province, China
| | - Jing Yu
- The Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunzhou Road No. 519, Kunming City, 650100 Yunnan Province, China
| | - Yongchun Zhou
- Molecular Diagnosis Center of Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunzhou Road No. 519, Kunming City, 650100 Yunnan Province, China
| |
Collapse
|
18
|
Castellani G, Buccarelli M, Lulli V, Ilari R, De Luca G, Pedini F, Boe A, Felli N, Biffoni M, Pilozzi E, Marziali G, Ricci-Vitiani L. MiR-378a-3p Acts as a Tumor Suppressor in Colorectal Cancer Stem-Like Cells and Affects the Expression of MALAT1 and NEAT1 lncRNAs. Front Oncol 2022; 12:867886. [PMID: 35814429 PMCID: PMC9263271 DOI: 10.3389/fonc.2022.867886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
MiR-378a-3p plays a critical role in carcinogenesis acting as a tumor suppressor, promoting apoptosis and cell cycle arrest and reducing invasion and drug resistance in several human cancers, including colorectal cancer (CRC), where its expression is significantly associated with histological classification and prognosis. In this study, we investigated the biological and cellular processes affected by miR-378a-3p in the context of CRC carcinogenesis. In agreement with the literature, miR-378a-3p is downregulated in our cohort of CRC patients as well as, in 15 patient-derived colorectal cancer stem-like cell (CRC-SC) lines and 8 CRC cell lines, compared to normal mucosae. Restoration of miR-378a-3p restrains tumorigenic properties of CRC and CRC-SC lines, as well as, significantly reduces tumor growth in two CRC-SC xenograft mouse models. We reported that miR-378a-3p modulates the expression of the lncRNAs MALAT1 and NEAT1. Their expression is inversely correlated with that of miR-378a-3p in patient-derived CRC-SC lines. Silencing of miR-378a-3p targets, MALAT1 and NEAT1, significantly impairs tumorigenic properties of CRC-SCs, supporting the critical role of miR-378a-3p in CRC carcinogenesis as a tumor-suppressor factor by establishing a finely tuned crosstalk with lncRNAs MALAT1 and NEAT1.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina Lulli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ramona Ilari
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele De Luca
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Pedini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Boe
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Nadia Felli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, UOC Anatomia Patologica, Sant’Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Giovanna Marziali
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Lucia Ricci-Vitiani,
| |
Collapse
|
19
|
Chen S, Zheng J, Zhang B, Tang X, Cun Y, Wu T, Xu Y, Ma T, Cheng J, Yu Z, Wang H. Identification and characterization of virus-encoded circular RNAs in host cells. Microb Genom 2022; 8. [PMID: 35731570 PMCID: PMC9455708 DOI: 10.1099/mgen.0.000848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Emerging evidence has identified viral circular RNAs (circRNAs) in human cells infected by viruses, interfering with the immune system and inducing diseases including human cancer. However, the biogenesis and regulatory mechanisms of virus-encoded circRNAs in host cells remain unknown. In this study, we used the circRNA detection tool CIRI2 to systematically determine the virus-encoded circRNAs in virus-infected cancer cell lines and cancer patients, by analysing RNA-Seq datasets derived from RNase R-treated samples. Based on the thousands of viral circRNAs we identified, the biological characteristics and potential roles of viral circRNAs in regulating host cell function were determined. In addition, we developed a Viral-circRNA Database (http://www.hywanglab.cn/vcRNAdb/), which is open to all users to search, browse and download information on circRNAs encoded by viruses upon infection.
Collapse
Affiliation(s)
- Shuting Chen
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Jie Zheng
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Bingyue Zhang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Xinyue Tang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Yewei Cun
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Tao Wu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Yue Xu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Ting Ma
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Jingxin Cheng
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, PR China
| | - Zuoren Yu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, PR China
| | - Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
20
|
Bodulev OL, Sakharov IY. Modern Methods for Assessment of microRNAs. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:425-442. [PMID: 35790375 DOI: 10.1134/s0006297922050042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
The review discusses modern methods for the quantitative and semi-quantitative analysis of miRNAs, which are small non-coding RNAs affecting numerous biological processes such as development, differentiation, metabolism, and immune response. miRNAs are considered as promising biomarkers in the diagnosis of various diseases.
Collapse
Affiliation(s)
- Oleg L Bodulev
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia
| | - Ivan Yu Sakharov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.
| |
Collapse
|
21
|
Colorectal Cancer Diagnosis: The Obstacles We Face in Determining a Non-Invasive Test and Current Advances in Biomarker Detection. Cancers (Basel) 2022; 14:cancers14081889. [PMID: 35454792 PMCID: PMC9029324 DOI: 10.3390/cancers14081889] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is one of the most common cancers in the western world. CRC originates from precursor adenomatous polyps, which may over time develop into cancer. Endoscopic evaluation remains the gold-standard investigation for the disease. In the absence of molecular tools for early detection, the removal of neoplastic adenomas via polypectomy remains an important measure to prevent dysplastic adenomas from evolving into invasive carcinoma. Colonoscopy is an intrusive procedure that provides an uncomfortable experience for patients. Kits for testing for the presence of blood hemoglobin in the stool are now widely used, and DNA methylation-based detection kits have been approved in the USA for testing the stool and plasma, but few other molecular biomarkers have found their way into medical practice. This review summarizes current trends in the detection and screening of CRC and provides a definitive review of emerging molecular biomarkers for CRC. Abstract Globally, colorectal cancer (CRC) is the third most common cancer, with 1.4 million new cases and over 700,000 deaths per annum. Despite being one of the most common cancers, few molecular approaches to detect CRC exist. Carcinoembryonic antigen (CEA) is a known serum biomarker that is used in CRC for monitoring disease recurrence or response to treatment. However, it can also be raised in multiple benign conditions, thus having no value in early detection or screening for CRC. Molecular biomarkers play an ever-increasing role in the diagnosis, prognosis, and outcome prediction of disease, however, only a limited number of biomarkers are available and none are suitable for early detection and screening of CRC. A PCR-based Epi proColon® blood plasma test for the detection of methylated SEPT9 has been approved by the USFDA for CRC screening in the USA, alongside a stool test for methylated DNA from CRC cells. However, these are reserved for patients who decline traditional screening methods. There remains an urgent need for the development of non-invasive molecular biomarkers that are highly specific and sensitive to CRC and that can be used routinely for early detection and screening. A molecular approach to the discovery of CRC biomarkers focuses on the analysis of the transcriptome of cancer cells to identify differentially expressed genes and proteins. A systematic search of the literature yielded over 100 differentially expressed CRC molecular markers, of which the vast majority are overexpressed in CRC. In terms of function, they largely belong to biological pathways involved in cell division, regulation of gene expression, or cell proliferation, to name a few. This review evaluates the current methods used for CRC screening, current availability of biomarkers, and new advances within the field of biomarker detection for screening and early diagnosis of CRC.
Collapse
|
22
|
Sheng L, Chen C, Chen Y, He Y, Zhuang R, Gu Y, Yan Q, Li W, Lu C. vFLIP-regulated competing endogenous RNA (ceRNA) networks targeting lytic induction for KSHV-associated malignancies. J Med Virol 2022; 94:2766-2775. [PMID: 35149992 DOI: 10.1002/jmv.27654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/11/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes life-long latent infection and malignancies, including Kaposi sarcoma (KS) commonly found in AIDS patients. Lytic replication can be induced to kill tumor cells harboring latent KSHV, through viral cytopathic effects and the subsequent antiviral immune responses. Viral FLICE-inhibitory protein (vFLIP), encoded by KSHV ORF K13, inhibits KSHV lytic reactivation, implying that the competing endogenous RNA (ceRNA) networks regulated by vFLIP can be modulated to induce the lytic reactivation of latent KSHV, a promising strategy for KSHV-associated malignancies. Here, we performed whole-transcriptome sequencing to reveal the global landscape of non-coding RNAs and mRNAs in iSLK-RGB-BAC16 cells and iSLK-RGB-K13 mutant cells. It showed that vFLIP regulated 227 differently expressed (DE) lncRNAs, 57 DE circRNAs, 20 DE miRNAs and 1371 DE mRNAs. Enrichment analysis verified that riboflavin metabolism was simultaneously enriched in DE genes related to miRNAs, lncRNAs, and circRNAs. The upregulated hsa-miR-378i and hsa-miR-3654, and downregulated miR-4467, miR-3163, miR-4451 and miR-4257 were significantly enriched in the ceRNA complex network, which contained 9 upregulated and 7 downregulated circRNAs, 5 upregulated and 85 downregulated lncRNAs, 5 upregulated and 35 downregulated mRNAs. Finally, we constructed and validated two vFLIP-regulated ceRNA networks: circRNA hsa_circ_0070049/hsa-miR-378i/SPEG/FOXQ1 and lncRNA AL031123.1/hsa-miR-378i/SPEG/FOXQ1. Taken together, the two ceRNA networks may mediate KSHV reactivation. These novel findings refreshed the present understanding of ceRNA network in KSHV lytic induction and provided potential therapeutic targets for KSHV-associated malignancies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liuxue Sheng
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Chen Chen
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yuheng Chen
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yujia He
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Ruoyu Zhuang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yang Gu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Wan Li
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Chun Lu
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| |
Collapse
|
23
|
Moazzendizaji S, Sevbitov A, Ezzatifar F, Jalili HR, Aalii M, Hemmatzadeh M, Aslani S, Gholizadeh Navashenaq J, Safari R, Hosseinzadeh R, Rahmany MR, Mohammadi H. microRNAs: Small molecules with a large impact on colorectal cancer. Biotechnol Appl Biochem 2021; 69:1893-1908. [PMID: 34550619 DOI: 10.1002/bab.2255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) accounts for one of the main cancer-related mortality and morbidity worldwide. The molecular mechanisms of CRC development have been broadly investigated and, over the last decade, it has become evident that aberrant transcription of microRNAs (miRNAs), a class of small, noncoding RNA molecules, has a significant role in the inception and promotion of CRC. In the involved tissues of CRC, the transcription profile of miRNAs is modulated, and their expression templates are related with prognosis, diagnosis, and treatment outcomes. Here, in the current review, we attempted to discuss the latest information regarding the aberrantly expressed miRNAs in CRC and the advantages of utilizing miRNAs as biomarkers for early diagnosis and prognosis of CRC as well as potential therapeutic application. The effect of miRNAs involved in various signaling pathways, primarily p53, EGFR, Wnt, and TGF-β pathways, was clarified.
Collapse
Affiliation(s)
- Sahand Moazzendizaji
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Andrey Sevbitov
- Head of Department of Propaedeutics of Dental Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Fatemeh Ezzatifar
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Jalili
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Morteza Aalii
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Roghaiyeh Safari
- Molecular and Cellular Epigenetics (GIGA), University of Liege, Sart-Tilman Liège, Belgium.,13. Molecular and Cellular Biology (TERRA), Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Ramin Hosseinzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rahmany
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
24
|
Durán-Vinet B, Araya-Castro K, Calderón J, Vergara L, Weber H, Retamales J, Araya-Castro P, Leal-Rojas P. CRISPR/Cas13-Based Platforms for a Potential Next-Generation Diagnosis of Colorectal Cancer through Exosomes Micro-RNA Detection: A Review. Cancers (Basel) 2021; 13:4640. [PMID: 34572866 PMCID: PMC8466426 DOI: 10.3390/cancers13184640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer with the second highest mortality rate worldwide. CRC is a heterogenous disease with multiple risk factors associated, including obesity, smoking, and use of alcohol. Of total CRC cases, 60% are diagnosed in late stages, where survival can drop to about 10%. CRC screening programs are based primarily on colonoscopy, yet this approach is invasive and has low patient adherence. Therefore, there is a strong incentive for developing molecular-based methods that are minimally invasive and have higher patient adherence. Recent reports have highlighted the importance of extracellular vesicles (EVs), specifically exosomes, as intercellular communication vehicles with a broad cargo, including micro-RNAs (miRNAs). These have been syndicated as robust candidates for diagnosis, primarily for their known activities in cancer cells, including immunoevasion, tumor progression, and angiogenesis, whereas miRNAs are dysregulated by cancer cells and delivered by cancer-derived exosomes (CEx). Quantitative polymerase chain reaction (qPCR) has shown good results detecting specific cancer-derived exosome micro-RNAs (CEx-miRNAs) associated with CRC, but qPCR also has several challenges, including portability and sensitivity/specificity issues regarding experiment design and sample quality. CRISPR/Cas-based platforms have been presented as cost-effective, ultrasensitive, specific, and robust clinical detection tools in the presence of potential inhibitors and capable of delivering quantitative and qualitative real-time data for enhanced decision-making to healthcare teams. Thereby, CRISPR/Cas13-based technologies have become a potential strategy for early CRC diagnosis detecting CEx-miRNAs. Moreover, CRISPR/Cas13-based platforms' ease of use, scalability, and portability also showcase them as a potential point-of-care (POC) technology for CRC early diagnosis. This study presents two potential CRISPR/Cas13-based methodologies with a proposed panel consisting of four CEx-miRNAs, including miR-126, miR-1290, miR-23a, and miR-940, to streamline novel applications which may deliver a potential early diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Benjamín Durán-Vinet
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Karla Araya-Castro
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Innovation and Entrepreneurship Institute (iDEAUFRO), Universidad de La Frontera, Temuco 4780000, Chile
| | - Juan Calderón
- Center for Genetics and Genomics, School of Medicine, Institute of Science and Innovation in Medicine (ICIM), Clínica Alemana, Universidad del Desarrollo, Santiago 8320000, Chile;
| | - Luis Vergara
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
- Doctoral Program in Cell and Applied Molecular Biology, Universidad de La Frontera, Temuco 4780000, Chile
| | - Helga Weber
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Javier Retamales
- Chilean Cooperative Group for Oncologic Research (GOCCHI), Santiago 8320000, Chile;
| | - Paulina Araya-Castro
- School of Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago 8320000, Chile;
| | - Pamela Leal-Rojas
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
25
|
Zhao Y, Zhou H, Shen J, Yang S, Deng K, Li Q, Cui W. MiR-1236-3p Inhibits the Proliferation, Invasion, and Migration of Colon Cancer Cells and Hinders Epithelial-Mesenchymal Transition by Targeting DCLK3. Front Oncol 2021; 11:688882. [PMID: 34540665 PMCID: PMC8446622 DOI: 10.3389/fonc.2021.688882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Dysregulated microRNAs (miRNAs) are common in human cancer and are involved in the proliferation, promotion, and metastasis of tumor cells. Therefore, this study aimed to evaluate the expression and biological function of miR-1236-3p in colon cancer. METHODS This study screened the miRNA in normal and colon cancer tissues through array analysis. In addition, quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) analysis was performed to validate the expression of miR-1236-3p in normal and tumor tissues from colon cancer patients and cancer cell lines. Online predicting algorithms and luciferase reporter assays were also employed to confirm Doublecortin Like Kinase 3 (DCLK3) was the target for miR-1236-3p. Moreover, the impact of miR-1236-3p on the progression of colon cancer was evaluated in vitro and in vivo. Western blotting and qRT-PCR were also performed to investigate the interactions between miR-1236-3p and DCLK3. RESULTS MiR-1236-3p was significantly downregulated in colon cancer tissues and its expression was associated with the TNM stage and metastasis of colon. In addition, the in vitro and in vivo experiments showed that miR-1236-3p significantly promoted cancer cell apoptosis and inhibited the proliferation, invasion, and migration of cancer cells. The results also showed that miR-1236-3p hindered Epithelial-mesenchymal Transition (EMT) by targeting DCLK3. Moreover, the expression of DCLK3 mediated the effects of miR-1236-3p on the progression of cancer. CONCLUSIONS MiR-1236-3p functions as a tumor suppressor in colon cancer by targeting DCLK3 and is therefore a promising therapeutic target for colon cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Cui
- Department of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo City, China
| |
Collapse
|
26
|
Cui P, Dai X, Liu R, Cao H. LncRNA LINC00888 upregulation predicts a worse survival of laryngeal cancer patients and accelerates the growth and mobility of laryngeal cancer cells through regulation of miR-378g/TFRC. J Biochem Mol Toxicol 2021; 35:e22878. [PMID: 34472153 DOI: 10.1002/jbt.22878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/29/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022]
Abstract
In this study, we aimed to detect the clinical significance and potential mechanism of LINC00888 in laryngeal cancer. Data from The Cancer Genome Atlas (TCGA) afforded the expression of LINC00888 in laryngeal cancer samples. The clinical significance of LINC00888 expression in laryngeal cancer was demonstrated by χ2 , Cox analysis, and Kaplan-Meier. The downstream targets of LINC00888 were identified based on analysis from bioinformatics and laryngeal cancer-related TCGA data sets. The microRNA-378g (miR-378g)/TFRC (transferrin receptor) axis was selected and identified by qRT-PCR, Western blot analysis, and luciferase activity assays. Cell counting kit-8, colony formation, and transwell assays were applied to detect the phenotypes of laryngeal cancer cells. We observed that LINC00888 expression was notably increased in laryngeal cancer and associated with death, recurrence, and prognosis. Depletion of LINC00888 repressed the proliferative and motile abilities of laryngeal cancer cells in vitro. LINC00888 was predicted to act as a competing endogenous RNA within the microRNA (miRNA)/messenger RNA (mRNA) axis based on analysis from bioinformatics and laryngeal cancer-related TCGA data sets. Interestingly, we discovered that LINC00888 functioned as an miRNA sponge to suppress the effect of miR-378g on laryngeal cancer cells behaviors, as well as positively regulate TFRC expression. Furthermore, the knockdown of TFRC strengthened the inhibitory effect of si-LINC00888 on laryngeal cancer cells' malignant properties. LINC00888 is an oncogenic lncRNA that promotes the growth and mobility of laryngeal cancer cells by controlling laryngeal cancer-related mRNA and tumor-suppressive miRNA. The LINC00888/miR-378g/TFRC pathway might lead to the development of laryngeal cancer cells and, therefore, might be a candidate therapeutic target for laryngeal cancer.
Collapse
Affiliation(s)
- Panpan Cui
- Department of ENT, People's Hospital of Rizhao, Shandong, China
| | - Xiuli Dai
- Department of Orthopedics, Central Hospital of Rizhao, Shandong, China
| | - Ruiyue Liu
- Department of Otolaryngology, Heze Municipal Hospital, Shandong, China
| | - Hanhai Cao
- Department of Otolaryngology-Head & Neck Surgery, The People's Hospital of Rizhao, Shandong, China
| |
Collapse
|
27
|
Akyüz N, Penas EMM, Janjetovic S, Loges S, Bokemeyer C, Dierlamm J. Molecular- and cytogenetic characterization of the IGH associated t(1;14) in a nodal marginal zone B-cell lymphoma case. Leuk Lymphoma 2021; 62:3526-3530. [PMID: 34405762 DOI: 10.1080/10428194.2021.1966783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nuray Akyüz
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Maria Murga Penas
- Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel, Kiel, Germany
| | - Snjezana Janjetovic
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Loges
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Judith Dierlamm
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Piotrowski I, Zhu X, Saccon TD, Ashiqueali S, Schneider A, de Carvalho Nunes AD, Noureddine S, Sobecka A, Barczak W, Szewczyk M, Golusiński W, Masternak MM, Golusiński P. miRNAs as Biomarkers for Diagnosing and Predicting Survival of Head and Neck Squamous Cell Carcinoma Patients. Cancers (Basel) 2021; 13:cancers13163980. [PMID: 34439138 PMCID: PMC8392400 DOI: 10.3390/cancers13163980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth most common cancer worldwide. It arises from the epithelium of the upper aerodigestive tract. Increasing evidence suggests that there is a significant role of microRNAs in HNSCC formation and progression. The aim of this study was to explore and compare the expression of HNSCC related miRNAs in tumor vs neighboring healthy tissue of HNSCC patients with tumors located in either the oral cavity, oropharynx, or larynx. Our results demonstrated that expression of these miRNAs was significantly different not only between healthy and tumor tissues, but also among tumor locations. Further analysis indicated that microRNA expression could be used to distinguish between tumor and healthy tissues, and prognose the overall survival of patients. Abstract Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth most common cancer worldwide. These tumors originate from epithelial cells of the upper aerodigestive tract. HNSCC tumors in different regions can have significantly different molecular characteristics. While many microRNAs (miRNAs) have been found to be involved in the regulation of the carcinogenesis and pathogenesis of HNSCC, new HNSCC related miRNAs are still being discovered. The aim of this study was to explore potential miRNA biomarkers that can be used to diagnose HNSCC and prognose survival of HNSCC patients. For this purpose, we chose a panel of 12 miRNAs: miR-146a-5p, miR-449a, miR-126-5p, miR-34a-5p, miR-34b-5p, miR-34c-5p, miR-217-5p, miR-378c, miR-6510-3p, miR-96-5p, miR-149-5p, and miR-133a-5p. Expression of these miRNAs was measured in tumor tissue and neighboring healthy tissue collected from patients diagnosed with HNSCC (n = 79) in either the oral cavity, oropharynx, or larynx. We observed a pattern of differentially expressed miRNAs at each of these cancer locations. Our study showed that some of these miRNAs, separately or in combination, could serve as biomarkers distinguishing between healthy and tumor tissue, and their expression correlated with patients’ overall survival.
Collapse
Affiliation(s)
- Igor Piotrowski
- Radiobiology Lab, Department of Medical Physics, Greater Poland Cancer Centre, 61-866 Poznan, Poland; (I.P.); (A.S.); (W.B.)
- Department of Electroradiology, Poznan University of Medical Sciences, ul. Garbary 15, 61-866 Poznan, Poland
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (X.Z.); (S.A.); (A.D.d.C.N.); (S.N.); (M.M.M.)
| | - Xiang Zhu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (X.Z.); (S.A.); (A.D.d.C.N.); (S.N.); (M.M.M.)
| | - Tatiana Dandolini Saccon
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Brazil;
| | - Sarah Ashiqueali
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (X.Z.); (S.A.); (A.D.d.C.N.); (S.N.); (M.M.M.)
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas 96010-610, Brazil;
| | - Allancer Divino de Carvalho Nunes
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (X.Z.); (S.A.); (A.D.d.C.N.); (S.N.); (M.M.M.)
| | - Sarah Noureddine
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (X.Z.); (S.A.); (A.D.d.C.N.); (S.N.); (M.M.M.)
| | - Agnieszka Sobecka
- Radiobiology Lab, Department of Medical Physics, Greater Poland Cancer Centre, 61-866 Poznan, Poland; (I.P.); (A.S.); (W.B.)
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (M.S.); (W.G.)
| | - Wojciech Barczak
- Radiobiology Lab, Department of Medical Physics, Greater Poland Cancer Centre, 61-866 Poznan, Poland; (I.P.); (A.S.); (W.B.)
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (M.S.); (W.G.)
| | - Mateusz Szewczyk
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (M.S.); (W.G.)
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (M.S.); (W.G.)
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Michal M. Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (X.Z.); (S.A.); (A.D.d.C.N.); (S.N.); (M.M.M.)
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (M.S.); (W.G.)
| | - Paweł Golusiński
- Department of Otolaryngology and Maxillofacial Surgery, University of Zielona Gora, 65-417 Zielona Gora, Poland
- Department of Maxillofacial Surgery, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Correspondence:
| |
Collapse
|
29
|
Genome-Wide Expression Difference of MicroRNAs in Basal Cell Carcinoma. J Immunol Res 2021; 2021:7223500. [PMID: 34395634 PMCID: PMC8357504 DOI: 10.1155/2021/7223500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Distinct expression of the miRNAs has rarely been explored in basal cell carcinoma (BCC) of skin, and the regulatory role of miRNAs in BCC development remains quite opaque. Here, we collected control tissues from adjacent noncancerous skin (n = 15; control group) and tissues at tumor centers from patients with cheek BCC (n = 15; BCC group) using punch biopsies. After six small RNA sequencing- (sRNA-seq-) based miRNA expression profiles were generated for both BCC and controls, including three biological replicates, we conducted comparative analysis on the sRNA-seq dataset, discovering 181 differentially expressed miRNAs (DEMs) out of the 1,873 miRNAs in BCCs. In order to validate the sRNA-seq data, expression of 15 randomly selected DEMs was measured using the TaqMan probe-based quantitative real-time PCR. Functional analysis of predicted target genes of DEMs in BCCs shows that these miRNAs are primarily involved in various types of cancers, immune response, epithelial growth, and morphogenesis, as well as energy production and metabolism, indicating that BCC development is caused, at least in part, by changes in miRNA regulation for biological and disease processes. In particular, the “basal cell carcinoma pathways” were found to be enriched by predicted DEM targets, and regulatory relationships between DEMs and their targeted genes in this pathway were further uncovered. These results revealed the association between BCCs and abundant miRNA molecules that regulate target genes, functional modules, and signaling pathways in carcinogenesis.
Collapse
|
30
|
Li W, Song Z, Jia N, Zhang C, Gao W, Wang L. microRNA-4429-5p suppresses the malignant development of colon cancer by targeting matrix metalloproteinase 16. In Vitro Cell Dev Biol Anim 2021; 57:715-725. [PMID: 34448115 DOI: 10.1007/s11626-021-00603-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
Colon cancer has been recognized as the major reason for global cancer-associated mortality. microRNA (miRNA, miR)-4429-5p has been documented to act as a tumor-suppressive miRNA in some cancers, but its effect on colon cancer remains elusive. In this study, the biological effects of miR-4429-5p were investigated both in vitro by MTT, 5-ethynyl-2'-deoxyuridine (EdU), wound healing, and transwell assays and in vivo by a xenograft mice model. Western blot, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and dual-luciferase assay were used to identify the binding of miR-4429-5p on matrix metalloproteinase 16 (MMP16) 3'-UTR. Our results suggested that overexpression of miR-4429-5p hindered colon cancer cell proliferation, migration, and invasion, whereas knockdown of miR-4429-5p exhibited the opposite effect in colon cancer cells. Mechanistically, miR-4429-5p directly bound to the 3'-UTR of MMP16 and led to inhibition of MMP16 protein. Overexpression of miR-4429-5p inhibited colon tumor growth by targeting MMP16. Taken together, our study revealed that miR-4429-5p prevented colon cancer progression through targeting MMP16, indicating miR-4429-5p as a promising target for treatment improvement for colon cancer.
Collapse
Affiliation(s)
- Wei Li
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Zhe Song
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Nan Jia
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Cui Zhang
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Weina Gao
- The Fourth Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, China
| | - Liang Wang
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China.
| |
Collapse
|
31
|
Aita A, Millino C, Sperti C, Pacchioni B, Plebani M, De Pittà C, Basso D. Serum miRNA Profiling for Early PDAC Diagnosis and Prognosis: A Retrospective Study. Biomedicines 2021; 9:845. [PMID: 34356909 PMCID: PMC8301411 DOI: 10.3390/biomedicines9070845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tumor stage predicts pancreatic cancer (PDAC) prognosis, but prolonged and short survivals have been described in patients with early-stage tumors. Circulating microRNA (miRNA) are an emerging class of suitable biomarkers for PDAC prognosis. Our aim was to identify whether serum miRNA signatures predict survival of early-stage PDAC. METHODS Serum RNA from archival 15 stage I-III PDAC patients and 4 controls was used for miRNAs expression profile (Agilent microarrays). PDAC patients with comparable age, gender, diabetes, jaundice and surgery were classified according to survival: less than 14 months (7/15 pts, group A) and more than 22 months (8/15 pts, group B). Bioinformatic data analysis was performed by two-class Significance Analysis of Microarray (SAM) algorithm. Binary logistic regression analyses considering PDAC diagnosis and outcome as dependent variables, and ROC analyses were also performed. RESULTS 2549 human miRNAs were screened out. At SAM, 76 differentially expressed miRNAs were found among controls and PDAC (FDR = 0.4%), the large majority (50/76, 66%) of them being downregulated in PDAC with respect to controls. Six miRNAs were independently correlated with early PDAC, and among these, hsa-miR-6821-5p was associated with the best ROC curve area in distinguishing controls from early PDAC. Among the 71 miRNAs differentially expressed between groups A and B, the most significant were hsa-miR-3135b expressed in group A only, hsa-miR-6126 and hsa-miR-486-5p expressed in group B only. Eight miRNAs were correlated with the presence of lymph-node metastases; among these, hsa-miR-4669 is of potential interest. hsa-miR-4516, increased in PDAC and found as an independent predictor of survival, has among its putative targets a series of gens involved in key pathways of cancer progression and dissemination, such as Wnt and p53 signalling pathways. CONCLUSIONS A series of serum miRNAs was identified as potentially useful for the early diagnosis of PDAC, and for establishing a prognosis.
Collapse
Affiliation(s)
- Ada Aita
- Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (A.A.); (M.P.)
| | - Caterina Millino
- Department of Biology, University of Padova, 35131 Padova, Italy; (C.M.); (B.P.)
| | - Cosimo Sperti
- Department of Surgical, Oncological and Gastroenterological Sciences-DiSCOG, University of Padova, 35128 Padova, Italy;
| | - Beniamina Pacchioni
- Department of Biology, University of Padova, 35131 Padova, Italy; (C.M.); (B.P.)
| | - Mario Plebani
- Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (A.A.); (M.P.)
| | - Cristiano De Pittà
- Department of Biology, University of Padova, 35131 Padova, Italy; (C.M.); (B.P.)
| | - Daniela Basso
- Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (A.A.); (M.P.)
| |
Collapse
|
32
|
Gungormez C, Teker E, Atmanoglu S, Borazan E. miRNA Profile and Bioinformatic Analysis for Diagnosis in Patients with Stage IIIA Colon Cancer. Biochem Genet 2021; 60:191-203. [PMID: 34145496 DOI: 10.1007/s10528-021-10096-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
Early diagnosis is a critical factor in deciding the outcome of colon cancer, as is the case with other types of cancers. Recent scientific developments have enabled the use of biomarkers for diagnosis and for designing treatment strategies for various cancer types. Further, identification of potential targets of these biomarkers will facilitate a better understanding of molecular processes. The aim of this study is to analyze microRNA expression profile, and through bioinformatic analyses determine the cellular processes of potential target genes and understand their molecular mechanism in stage IIIA colon cancer patients. The microRNA expression profiles of both normal and tumor tissues of seven patients were analyzed using the Affymetrix microarray system. The target genes were identified by performing a KEGG pathway analysis on eight miRNAs (hsa-miR-362-3p, hsa-miR-34c-5p, hsa-miR-34c-3p, hsa-miR-34a-3p, hsa-miR-19b-1-3p, hsa-miR-371a-5p, hsa-miR-941 ad hsa-miR-7-5p), which were selected through an array scan by using DIANA-miRPath v.3 bioinformatic analysis tool. Biological pathway and cellular component analyses were performed on 30 genes targeted by miRNAs using FunRich Gene Enrichment tool. These analyses indicated that the genes targeted by these eight miRNAs played a role in either cell communication (53%), signal transduction (60%) or apoptosis (20%) in stage IIIA colon cancer. Taken together, these data suggest that these miRNAs can be used as biomarkers in Stage IIIA colon cancer.
Collapse
Affiliation(s)
- Cigdem Gungormez
- Department of Medical Biology, Faculty of Medicine, Siirt University, Siirt, Turkey.
| | - Emine Teker
- Biology Department, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Sema Atmanoglu
- Biology Department, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Ersin Borazan
- General Surgery Department, Medical Faculty, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
33
|
Zhou H, Zhang J, Li B, Liu J, Xu JJ, Chen HY. Dual-Mode SERS and Electrochemical Detection of miRNA Based on Popcorn-like Gold Nanofilms and Toehold-Mediated Strand Displacement Amplification Reaction. Anal Chem 2021; 93:6120-6127. [PMID: 33821629 DOI: 10.1021/acs.analchem.0c05221] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNA (miRNA) has emerged as one of the ideal target biomarker analytes for cancer detection because its abnormal expression is closely related to the occurrence of many cancers. In this work, we combined three-dimensional (3D) popcorn-like gold nanofilms as novel surface-enhanced Raman scattering (SERS)-electrochemistry active substrates with toehold-mediated strand displacement reactions (TSDRs) to construct a DNA molecular machine for SERS-electrochemistry dual-mode detection of miRNA. 3D popcorn-like spatial structures generated more active "hot spots" and thus enhanced the sensitivity of SERS and electrochemical signals. Besides, the TSDRs showed high sequence-dependence and high specificity. The addition of target miRNA will trigger the molecular machine to perform two TSDRs in the presence of signal DNA strands modified by R6G (R6G-DNA), thus achieving an enzyme-free amplification detection of miRNA with a low limit of detection of 0.12 fM (for the SERS method) and 2.2 fM (for the electrochemical method). This biosensor can also serve as a universally amplified and sensitive detection platform for monitoring different biomarkers, such as cancer-related DNA, messenger RNA, or miRNA molecules, with high selectivity by changing the corresponding probe sequence.
Collapse
Affiliation(s)
- Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jishou Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
34
|
Zhang L, Zou L, Sun P. Relationship between miR-378c and YY1 expression in patients with gastric cancer and the clinicopathological features. Cell Mol Biol Lett 2021; 26:12. [PMID: 33794762 PMCID: PMC8017737 DOI: 10.1186/s11658-021-00256-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/18/2021] [Indexed: 12/24/2022] Open
Abstract
Background The purpose of this study was to explore the clinical value of miR-378c and its target gene YY1 in gastric cancer. Methods The TCGA database was employed to analyse miR-378c expression in gastric cancer. qRT-PCR was applied to identify miR-378c and YY1 in tissues and serum of patients suffering from gastric cancer. The association of miR-378c with the clinical data of patients with gastric cancer was analysed. Receiver operating characteristics (ROC) curve analysis was used to determine the diagnostic value of miR-378c and YY1 in gastric cancer, and analyse the relationship between miR-378c and YY1 and patients’ survival. Pearson’s test was applied to determine the association between miR-378c and YY1 in tissue and serum of patients. Dual-Luciferase Reporter assay was employed to examine the targeting association between miR-378c and YY1. Finally, independent prognostic factors was determined in patients with gastric cancer using Cox regression analysis. Results In the TCGA database, miR-378c was weakly expressed in gastric cancer. Overall, patients with low expression had a lower survival rate. The expression of miR-378c decreased and the expression of YY1 increased in cancer tissues and serum of tumour patients. In patients with low expression of miR-378c the tumour size was ≥ 5 cm. Low differentiation, high TNM staging and lymph node invasion rate increased significantly, but the 5-year survival rate decreased in the patients. miR-378c and YY1 had better diagnostic value in gastric cancer. TargetScan, miRDB, starBase and miRTarBase predicted that YY1 was a potential gene of miR-378c, and the Dual-Luciferase Reporter assay revealed that there was a targeting relationship between the two, which was proved by correlation analysis. Multivariate Cox analysis revealed that differentiation, TNM staging and miR-378c were independent prognostic factors for patients. Conclusions MiR-378c is weakly expressed in gastric cancer patients and may be considered as a promising diagnostic and prognostic indicator for gastric cancer.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Gastroenterology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255000, Shandong, China
| | - Lei Zou
- Department of Gastroenterology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255000, Shandong, China
| | - Peng Sun
- Department of Gastroenterology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255000, Shandong, China.
| |
Collapse
|
35
|
Sun H, Shi Y, Shang Y, Chen X, Xia F. MicroRNA‑378d inhibits Glut4 by targeting Rsbn1 in vitamin D deficient ovarian granulosa cells. Mol Med Rep 2021; 23:369. [PMID: 33760197 PMCID: PMC7985995 DOI: 10.3892/mmr.2021.12008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/01/2021] [Indexed: 11/23/2022] Open
Abstract
Vitamin D (VD) is not only associated with bone growth and development, but is also closely associated with numerous other pathological conditions. The present study aimed to investigate the effect of microRNA (miRNA/miR)-378d on ovarian granulosa cells by regulating the round spermatid basic protein 1 (Rsbn1) in the absence of VD. The abnormal expression of miRNAs in ovarian tissues of the VD-deficient mouse was analyzed using transcriptome sequencing. miR-378d, glucose transporter 4 (Glut4) and aromatase (Cyp19a) expression levels were examined via reverse transcription-quantitative (RT-q)PCR and western blotting. The expression levels of Rsbn1, Glut4 and Cyp19a were detected in transfected mouse ovarian granulosa cells. The targeting regulation between miR-378d and Rsbn1 was verified using double reporter gene assay and functional rescue experiments. Among the 672 miRNAs that were differentially expressed, cluster analysis revealed that 17 were significantly upregulated and 16 were significantly downregulated. Moreover, miR-378d showed significant upregulation, which was further verified via RT-qPCR. It was identified that the protein expression level of Rsbn1 was significantly downregulated. Furthermore, Glut4 mRNA expression was significantly decreased in the mimic group but markedly increased in the inhibitor group. By contrast, the mRNA expression levels of Rsbn1 and Cyp19a did not demonstrate any significant difference. The western blotting results indicated that the protein expression levels of Rsbn1 and Glut4 were decreased and increased, respectively, while Cyp19a did not show any significant change. In addition, the double reporter gene experiments confirmed that Rsbn1 was the target gene of miR-378d. Collectively, the present results demonstrated that miR-378d was abnormally overexpressed in the ovarian tissues of the VD-deficient mice, and that miR-378d could inhibit Glut4 production by targeting Rsbn1, which may lead to insulin resistance.
Collapse
Affiliation(s)
- Huiting Sun
- Department of Reproductive Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yichao Shi
- Department of Reproductive Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yuwei Shang
- Department of Reproductive Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Xia Chen
- Department of Reproductive Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Fei Xia
- Department of Reproductive Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
36
|
Lei J, He ZY, Wang J, Hu M, Zhou P, Lian CL, Hua L, Wu SG, Zhou J. Identification of MEG8/miR-378d/SOBP axis as a novel regulatory network and associated with immune infiltrates in ovarian carcinoma by integrated bioinformatics analysis. Cancer Med 2021; 10:2924-2939. [PMID: 33742531 PMCID: PMC8026926 DOI: 10.1002/cam4.3854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/31/2022] Open
Abstract
Background To investigate the potential molecular mechanism of ovarian cancer (OC) evolution and immunological correlation using the integrated bioinformatics analysis. Methods Data from the Gene Expression Omnibus was used to gain differentially expressed genes (DEGs). Gene Ontology and Kyoto Encyclopedia of Gene and Genome pathway analysis were completed by utilizing the Database for Annotation, Visualization, and Integrated Discovery. After multiple validations via The Cancer Genome Atlas (TCGA), Genotype‐Tissue Expression (GTEx) projects, the Human Protein Atlas, Kaplan–Meier (KM) plotter, and immune logical relationships of the key gene SOBP were evaluated based on Tumor Immune Estimation Resource, and Gene Set Enrichment Analysis (GSEA) software. Finally, the lncRNAs‐miRNAs‐mRNAs subnetwork was predicted by starBase, TargetScan, miRBD, and LncBase, individually. Correlation of expression and prognosis for mRNAs, miRNAs, and lncRNAs were confirmed by TCGA, Gene Expression Profiling Interactive Analysis 2 (GEPIA 2), starBase, and KM. Results A total of 192 shared DEGs were discovered from the four data sets, including 125 upregulated and 67 downregulated genes. Functional enrichment analysis presented that they were mainly enriched in cartilage development, pathway in PI3 K‐Akt signaling pathway. Lower expression of SOBP was the independent prognostic factor for inferior prognosis in OC patients. The downregulation of SOBP enhanced the infiltration levels of B cells, CD8+ T cells, Macrophage, Neutrophil, and Dendritic cells. GSEA also disclosed low SOBP showed a significantly associated with the activation of various immune‐related pathways. Finally, we first reported that the MEG8/miR‐378d/SOBP axis was linked to the development and prognosis of OC through regulating the cytokines pathway. Conclusions Our study establishes a novel MEG8/miR‐378d/SOBP axis in the development and prognosis of OC, and the triple subnetwork probably affects the progression of the OC by regulating the cytokines pathway.
Collapse
Affiliation(s)
- Jian Lei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Zhen-Yu He
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Jun Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Min Hu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Ping Zhou
- Department of Radiation Oncology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Chen-Lu Lian
- Department of Radiation Oncology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Li Hua
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - San-Gang Wu
- Department of Radiation Oncology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Juan Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
37
|
Sabarimurugan S, Madhav MR, Kumarasamy C, Gupta A, Baxi S, Krishnan S, Jayaraj R. Prognostic Value of MicroRNAs in Stage II Colorectal Cancer Patients: A Systematic Review and Meta-Analysis. Mol Diagn Ther 2021; 24:15-30. [PMID: 32020560 DOI: 10.1007/s40291-019-00440-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND We performed a systematic review and meta-analysis to identify and underline multiple microRNAs (miRNAs) as biomarkers of disease prognosis in stage II colorectal cancer (CRC) patients. METHODS AND ANALYSIS This systematic review and meta-analysis study was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The required articles were collected from online bibliographic databases from January 2011 to November 2019 with multiple permutation keywords. Quantitative data synthesis was based on a meta-analysis with pooled data to observe and analyse the outcome measures and effect estimates by using the random effect model. The subgroup analysis was performed from demographic characteristics and the available data. RESULTS Eighteen articles were included in this study, 16 of which were incorporated for meta-analysis to examine the stage II CRC prognosis with up- and downregulated miRNA expressions. The pooled hazard ratio (HR) for death in stage II CRC patients was 1.90 (95% confidence interval 1.63-2.211), with a significant p value. A subgroup analysis based on up- or downregulated miRNA expression individually and any deregulated miRNA was also associated with a worse prognosis. The subgroup analysis included parameters such as age, gender, stage II and III combined patients' survival and the repetitive miRNAs (miR21, miR215, miR143-5p, miR106a and miR145) individually. CONCLUSION MicroRNAs play a significant role in determining prognosis in stage II CRC patients, with upregulation of miR21, miR215, miR143-5p and miR106a, in particular, portending a worse prognosis. These miRNAs could be considered for further evaluation as biomarkers of prognosis and to guide the decision to administer adjuvant chemotherapy.
Collapse
Affiliation(s)
| | | | - Chellan Kumarasamy
- University of Adelaide, North Terrace Campus, Adelaide, SA, 5005, Australia
| | - Ajay Gupta
- American Oncology Institute, Nagpur, India
| | | | - Sunil Krishnan
- Department of Radiation Oncology, The University of Texas, Houston, TX, USA
| | - Rama Jayaraj
- College of Health and Human Sciences, Charles Darwin University, Ellengowan Drive, Darwin, NT, 0810, Australia.
| |
Collapse
|
38
|
Ye H, Li W, Wu K, Liu Y, Lv Y, Zhu Y, Luo H, Cui L. The SP1-Induced Long Noncoding RNA, LINC00339, Promotes Tumorigenesis in Colorectal Cancer via the miR-378a-3p/MED19 Axis. Onco Targets Ther 2020; 13:11711-11724. [PMID: 33235461 PMCID: PMC7678716 DOI: 10.2147/ott.s277254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Accumulating evidence has indicated that long noncoding RNAs (lncRNAs) are pivotal regulators involved in the pathogenesis of cancer; however, the molecular mechanism of LINC00339 in colorectal cancer (CRC) remains unclear. Methods The quantitative real-time polymerase chain reaction for the expression of LINC00339 and miR-378a-3p and Western blots for MED19 were performed. A dual-luciferase assay was used to investigate the interaction between LIN00339 and miR-378a-3p, as well as between miR-378a-3p and MED19. Cell proliferation was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and 5-ethynyl-2ʹ-deoxyuridine (EdU) assay. The cell cycle was analyzed by propidium iodide staining followed by flow cytometry analysis. The wound-healing and transwell invasion assays were used to evaluate cell migration and invasion. Results The expression of LINC00339 was significantly upregulated in CRC cells and tissues, and high LINC00339 expression indicated an advanced tumor stage. Further experiments demonstrated that SP1 activated LINC00339 expression by binding to its promoter region. Luciferase activity and RNA pull-down assays demonstrated a direct interaction between LINC00339 and miR-378a-3p. miR-378a-3p expression was decreased in CRC samples and negatively correlated with LINC00339 expression in tumors. Gain- and loss-of-function assays indicated that LINC00339 contributed to cell proliferation, cell cycle progression, migration, and invasion, while miR-378a-3p reversed these effects. Furthermore, cotransfection of wild-type MED19 3ʹ-UTR reporters and miR-378a-3p significantly reduced luciferase activity. MED19 mRNA and protein expression was inhibited and enhanced by miR-378a-3p and LINC00339, respectively. MED19 overexpression reversed the effect of miR-378a-3p on cellular processes. Moreover, LINC00339 promoted tumor growth in vivo and induced epithelial–mesenchymal transition (EMT) and activated the Wnt/β-catenin signaling pathway in cells. Conclusion Our findings demonstrate the regulatory role of the SP1/LINC00339/miR-378a-3p/MED19 axis in CRC tumorigenesis and provide novel insight into the molecular mechanism underlying CRC.
Collapse
Affiliation(s)
- Hua Ye
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Marine Biomedical Research, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Wende Li
- Guangdong Laboratory Animals Monitoring Institute, Zhanjiang, Guangdong 524023, People's Republic of China
| | - Kefeng Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Marine Biomedical Research, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Marine Biomedical Research, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yingnian Lv
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Marine Biomedical Research, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yuzhen Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Marine Biomedical Research, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Marine Biomedical Research, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, People's Republic of China.,Institute of Marine Biomedical Research, Guangdong Medical University, Zhanjiang, People's Republic of China
| |
Collapse
|
39
|
Li W, Zhu Q, Zhang S, Liu L, Zhang H, Zhu D. HOXC13-AS accelerates cell proliferation and migration in oral squamous cell carcinoma via miR-378g/HOXC13 axis. Oral Oncol 2020; 111:104946. [PMID: 32763778 DOI: 10.1016/j.oraloncology.2020.104946] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 06/24/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive cancer type in head and neck. A number of long non-coding RNAs (lncRNAs) are discovered to serve regulatory roles in OSCC. HOXC13 antisense RNA (HOXC13-AS) has been proved to behave as a tumor-facilitator in nasopharyngeal carcinoma, but its regulatory role in OSCC has never been investigated. In this study, GEPIA indicated that HOXC13-AS and its neighbor gene HOXC13 were upregulated in HNSC samples, and we consistently unveiled their upregulation in OSCC tissues and cell lines. Silencing HOXC13-AS abrogated OSCC cell proliferation, migration, and epithelial-to-mesenchymal transition (EMT). Moreover, HOXC13 overexpression rescued the influences of HOXC13-AS silence on OSCC cellular processes and in vivo tumor growth. Mechanistically, HOXC13-AS upregulated HOXC13 expression in OSCC through sequestering miR-378g, which was proved to exert suppressive functions in the malignant behaviors of OSCC cells. Further, HOXC13 was revealed to be positively correlated with HOXC13-AS and negatively with miR-378g in expression in OSCC samples. In sum, our findings suggested that HOXC13-AS functioned as a ceRNA to accelerate the malignant behaviors of OSCC cells via miR-378g/HOXC13 axis, shedding a new light on the lncRNA-targeted treatment for OSCC.
Collapse
Affiliation(s)
- Wenlu Li
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China.
| | - Qiuyu Zhu
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| | - Sanke Zhang
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| | - Lei Liu
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| | - Han Zhang
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| | - Dandan Zhu
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| |
Collapse
|
40
|
Qu Y, Zhang L, He D, Xu N, Tang Y, Shao Y, Shen J. Protective role of mesenchymal stem cells transfected with miRNA-378a-5p in phosgene inhalation lung injury. Biochem Biophys Res Commun 2020; 530:189-195. [PMID: 32828284 DOI: 10.1016/j.bbrc.2020.06.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023]
Abstract
Phosgene-induced lung injury is an important type of acute lung injury (ALI). Currently, no effective clinical treatment has been developed yet. Our previous study revealed that expressions of 6 miRNAs were significantly increased in phosgene-induced lung injury. The screened miRNA with the most significant effect on hepatocyte growth factor (HGF) expression by mesenchymal stem cells (MSCs) was transfected into MSCs. This study aimed to investigate whether the transfected MSCs had better therapeutic effects than MSCs alone. MSCs were co-cultured with miRNA mimics for 24h and 48h. HGF expression in culture supernatant was detected by ELISA. HGF expression in MSCs was detected by Western blot after being co-cultured with the selected miRNA inhibitor. The transfected MSCs were given to rats suffering from phosgene-induced lung injury. Expressions of TNF-α, IL-6, IL-1β and IL-10, were assayed by ELISA. SP-C mRNA level was tested by RT-PCR. VE-CAD expression was tested by Western blot. We found that miRNA-378a-5p most increased HGF expression among the six miRNAs. After transfection of MSCs with miRNA-378a-5p inhibitor, HGF expression was decreased. Compared with untreated MSCs, MSCs transfected with miRNA-378a-5p exhibited more significant decreases in lung injury score, white blood cell count and protein content while restoring respiratory indexes. Meanwhile, expressions of TNF-α, IL-6, IL-1β were decreased while those of IL-10, SP-C and VE-cadherin were increased. In conclusion, MSCs transfected with miRNA-378a-5p were more effective in treating phosgene-induced lung injury by repairing the secretion of alveolar epithelial cells and improving the permeability of vascular endothelial cells compared with MSCs alone.
Collapse
Affiliation(s)
- Yubei Qu
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China; Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China; Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China
| | - Lin Zhang
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China; Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China; Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China
| | - Daikun He
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China; Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China; Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China
| | - Ning Xu
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China; Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China; Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yuedong Tang
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China; Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China; Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yiru Shao
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China; Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China; Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jie Shen
- Department of Intensive Care Unit, Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China; Department of Intensive Care Unit, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China; Department of Intensive Care Unit, Medical Center of Radiation Injury, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Zou H, Yang L. miR-378a-5p improved the prognosis and suppressed the progression of hepatocellular carcinoma by targeting the VEGF pathway. Transl Cancer Res 2020; 9:1558-1566. [PMID: 35117503 PMCID: PMC8798882 DOI: 10.21037/tcr.2020.01.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/26/2019] [Indexed: 12/23/2022]
Abstract
Background The malignant tumor hepatocellular carcinoma (HCC) has a poor prognosis and ineffective therapeutic options. miR-378a-5p is a micro-ribonucleic acid (miRNA) that is overexpressed in many cancers. However, its role in the progression of human HCC is unclear. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure miR-378a-5p levels in tissues from patients with HCC and from HCC cell lines. Following transfection, flow cytometry and cell viability assays were used to measure cell proliferation. HCC cell invasive and migration capacities were assessed using Transwell assays. Western blots were performed with HCC cells to identify the expression of vascular endothelial growth factor (VEGF). Results The HCC tissues and cells had significantly reduced miR-378a-5p expression compared with normal liver tissues and cells, while miR-378a-5p mimics suppressed the colony formation, viability, migration and invasive capacity of HCC cells. The HCC tissues and cell lines had upregulated VEGF expression. In HCC cells, miR-378a-5p expression was negatively correlated with VEGF expression, and miR-378a-5p targeted VEGF in HCC cells. Conclusions miR-378a-5p improved the HCC prognosis and suppressed HCC progression by targeting the VEGF pathway.
Collapse
Affiliation(s)
- Haibo Zou
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Lan Yang
- Department of Oncology Centre, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| |
Collapse
|
42
|
microRNA-378a-5p iS a novel positive regulator of melanoma progression. Oncogenesis 2020; 9:22. [PMID: 32060259 PMCID: PMC7021836 DOI: 10.1038/s41389-020-0203-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Evaluating the expression levels of miR-378a-5p both in a large melanoma patient cohort from The Cancer Genome Atlas database and in melanoma patients from our Institute, we found that miR-378a-5p is upregulated in metastatic melanoma specimens. miR-378a-5p expression was also increased in melanoma cells resistant to target therapy, and decreased in response to drug treatment. We also demonstrated that overexpression of miR-378a-5p enhances in vitro cell invasion and migration, and facilitates the ability of melanoma cells to form de novo vasculogenic structures. While performing downstream targeting studies, we confirmed the ability of miR-378a-5p to modulate the expression of known target genes, such as SUFU, FUS-1, and KLF9. Luciferase-3′UTR experiments also identified STAMBP and HOXD10 as new miR-378a-5p target genes. MMP2 and uPAR, two HOXD10 target genes, were positively regulated by miR-378a-5p. Genetic and pharmacologic approaches inhibiting uPAR expression and activity evidenced that the in vitro tumor-promoting functions of miR-378a-5p, were in part mediated by uPAR. Of note miR-378a-5p was also able to increase VEGF, as well as in vitro and in vivo angiogenesis. Finally, genetic and pharmacologic modulation of Bcl-2 evidenced Bcl-2 ability to regulate miR-378a-5p expression. In conclusion, to the best of our knowledge, this is the first study demonstrating that miR-378a-5p acts as an oncogenic microRNA in melanoma.
Collapse
|
43
|
Mazza T, Gioffreda D, Fontana A, Biagini T, Carella M, Palumbo O, Maiello E, Bazzocchi F, Andriulli A, Tavano F. Clinical Significance of Circulating miR-1273g-3p and miR-122-5p in Pancreatic Cancer. Front Oncol 2020; 10:44. [PMID: 32117716 PMCID: PMC7010806 DOI: 10.3389/fonc.2020.00044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
The burden of pancreatic cancer (PanC) requires innovation in the current diagnostic approach. This study aimed to uncover new circulating microRNAs (miRNAs) that would distinguish patients with PanC from healthy subjects (HS) compared with the cancer antigen 19-9 (CA 19-9), and predict patients' clinical phenotypes and outcomes. MiRNA expression profiles in plasma were investigated by using a two-stage process. In a discovery phase, miRNAs levels were analyzed using the GeneChip™ miRNA 4.0 Affymetrix assay in 10 pools of plasma samples from PanC patients and HS; in a validation phase, significantly altered miRNAs were re-tested in independent cohorts of cancer patients and controls by droplet digital PCR (ddPCR). The diagnostic performance of the resulting miRNAs was compared to CA 19-9 determinations, and the associations of miRNAs plasma levels with patients' clinical phenotypes and outcomes were also taken into account. Bioinformatics selection of miRNAs differentially expressed in plasma uncovered miR-18a-5p, miR-122-5p, miR-1273g-3p, and miR-6126 as candidate oncogenic miRNAs in PanC. The ddPCR technology confirmed the significant over-expression of miR-122-5p, miR-1273g-3p, and miR-6126 in PanC compared to HS, in line with the trend of the CA 19-9 levels. Plasma levels of miR-1273g-3p, in combination with CA 19-9, showed higher power in distinguishing PanC patients from HS compared to the CA 19-9 tested alone, with a gain in both sensitivity and negative predictive value indicating a low false-negative rate (SE = 90.2% and NPV = 92.3% vs. SE = 82.1% and NPV = 87.9%). None of the oncogenic miRNAs were able to distinguish between a neoplastic and a proliferative/inflammatory disease of the pancreas, and were not able to stratify subjects according to the clinical risk for the disease. The only valuable association in PanC patients was found between miR-1273g-3p and tumor stage, and increased miR-122-5p levels emerged as independent negative prognostic factor for PanC patients (HR = 1.58, 95% CI = 1.03–2.43, p = 0.037). Our data highlighted a role for circulating miR-1273g-3p and miR-122-5p as new diagnostic and prognostic biomarkers for PanC.
Collapse
Affiliation(s)
- Tommaso Mazza
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Domenica Gioffreda
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS Casa Sollievo della, Foggia, Italy
| | - Andrea Fontana
- Unit of Biostatistics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Tommaso Biagini
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Evaristo Maiello
- Department of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Francesca Bazzocchi
- Department of Surgery, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Angelo Andriulli
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS Casa Sollievo della, Foggia, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS Casa Sollievo della, Foggia, Italy
| |
Collapse
|
44
|
Liu W, Yang YJ, An Q. LINC00963 Promotes Ovarian Cancer Proliferation, Migration and EMT via the miR-378g / CHI3L1 Axis. Cancer Manag Res 2020; 12:463-473. [PMID: 32021459 PMCID: PMC6982455 DOI: 10.2147/cmar.s229083] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNAs) are involved in the development and progression of numerous tumors. Nevertheless, their role in ovarian cancer (OC) needs further study. METHODS A pivotal lncRNA that modulated OC to metastasize was determined in this research, and its potential mechanism was inquired by qRT-PCR, CCK-8, EdU, Transwell assay, wound healing assay and Western blot assay. RESULTS In our study, the GSE119054 microarray was analyzed, and LINC00963 showed a significant higher level in ovarian cancer tissues compared with controls. So LINC00963 was selected as research object. It was discovered that LINC00963 displayed a close relationship with unfavorable prognosis, and it was prominently raised in OC tissues of patients with lymph node metastasis. What's more, LINC00963 downregulation in OC cells inhibited cell migration and invasion and inverted EMT triggered by TGF-β1. LINC00963 downregulation also inhibited tumorigenesis in nude mice. In addition, results show that LINC00963 is a cytoplasmic lncRNA that shares the miRNA response elements (MREs) of miR-378g with CHI3L1, which is confirmed by a luciferase reporter assay and AGO2-dependent RNA immunoprecipitation (RIP). CONCLUSION On the whole, our results demonstrate an explicit oncogenic role of LINC00963 in ovarian cancer tumorigenesis via competition with miR-378g, suggesting a new regulatory mechanism of LINC00963 and providing a potential therapeutic target for ovarian cancer patients.
Collapse
Affiliation(s)
- Wei Liu
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Yu-Jia Yang
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Qiang An
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| |
Collapse
|
45
|
Dubois-Camacho K, Diaz-Jimenez D, De la Fuente M, Quera R, Simian D, Martínez M, Landskron G, Olivares-Morales M, Cidlowski JA, Xu X, Gao G, Xie J, Chnaiderman J, Soto-Rifo R, González MJ, Calixto A, Hermoso MA. Inhibition of miR-378a-3p by Inflammation Enhances IL-33 Levels: A Novel Mechanism of Alarmin Modulation in Ulcerative Colitis. Front Immunol 2019; 10:2449. [PMID: 31824476 PMCID: PMC6879552 DOI: 10.3389/fimmu.2019.02449] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) characterized by mucosa damage associated with an uncontrolled inflammatory response. This immunological impairment leads to altered inflammatory mediators such as IL-33, which is shown to increase in the mucosa of active UC (aUC) patients. MicroRNAs present a distorted feature in inflamed colonic mucosa and are potential IL-33 regulating candidates in UC. Therefore, we studied the microRNA and mRNA profiles in inflamed colonic samples of UC patients, evaluating the effect of a microRNA (selected by in silico analysis and its expression in UC patients), on IL-33 under inflammatory conditions. We found that inflamed mucosa (n = 8) showed increased expression of 40 microRNAs and 2,120 mRNAs, while 49 microRNAs and 1,734 mRNAs were decreased, as determined by microarrays. In particular, IL-33 mRNA showed a 3.8-fold increase and eight members of a microRNA family (miR-378), which targets IL-33 mRNA in the 3'UTR, were decreased (-3.9 to -3.0 times). We selected three members of the miR-378 family (miR-378a-3p, miR-422a, and miR-378c) according to background information and interaction energy analysis, for further correlation analyses with IL-33 expression through qPCR and ELISA, respectively. We determined that aUC (n = 24) showed high IL-33 levels, and decreased expression of miR-378a-3p and miR-422a compared to inactive UC (n = 10) and controls (n = 6). Moreover, both microRNAs were inversely correlated with IL-33 expression, while miR-378c does not show a significant difference. To evaluate the effect of TNFα on the studied microRNAs, aUC patients with anti-TNF therapy were compared to aUC receiving other treatments. The levels of miR-378a-3p and miR-378c were higher in aUC patients with anti-TNF. Based on these findings, we selected miR-378a-3p to exploring the molecular mechanism involved by in vitro assays, showing that over-expression of miR-378a-3p decreased the levels of an IL-33 target sequence β-gal-reporter gene in HEK293 cells. Stable miR-378a-3p over-expression/inhibition inversely modulated IL-33 content and altered viability of HT-29 cells. Additionally, in an inflammatory context, TNFα decreased miR-378a-3p levels in HT-29 cells enhancing IL-33 expression. Together, our results propose a regulatory mechanism of IL-33 expression exerted by miR-378a-3p in an inflammatory environment, contributing to the understanding of UC pathogenesis.
Collapse
Affiliation(s)
- Karen Dubois-Camacho
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - David Diaz-Jimenez
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
- Laboratory of Signal Transduction, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institute of Health, Durham, NC, United States
| | - Marjorie De la Fuente
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
- Research Sub-direction, Academic Direction, Clínica Las Condes, Santiago, Chile
| | - Rodrigo Quera
- Inflammatory Bowel Disease Program, Gastroenterology Department, Clínica Las Condes, Santiago, Chile
| | - Daniela Simian
- Research Sub-direction, Academic Direction, Clínica Las Condes, Santiago, Chile
| | - Maripaz Martínez
- Research Sub-direction, Academic Direction, Clínica Las Condes, Santiago, Chile
| | - Glauben Landskron
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Mauricio Olivares-Morales
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - John A. Cidlowski
- Laboratory of Signal Transduction, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institute of Health, Durham, NC, United States
| | - Xiaojiang Xu
- Laboratory of Integrative Bioinformatics, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jun Xie
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jonás Chnaiderman
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María-Julieta González
- Cell and Molecular Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Calixto
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Interdisciplinary Center of Neuroscience of Valparaíso (CINV), Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| | - Marcela A. Hermoso
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| |
Collapse
|