1
|
Lakkireddy S, Aula S, Kapley A, Gundeti S, Kutala VK, Jamil K. Association of DNA repair gene XPC Ala499Val (rs2228000 C>T) and Lys939Gln (rs2228001 A>C) polymorphisms with the risk of chronic myeloid leukemia: A case-control study in a South Indian population. J Gene Med 2021; 23:e3339. [PMID: 33829606 DOI: 10.1002/jgm.3339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 02/27/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Xeroderma pigmentosum complementation group C (XPC), a DNA repair protein, plays an important role in the maintenance of genomic integrity and is essential for the nucleotide excision repair pathway. Polymorphisms in the XPC gene may alter DNA repair leading to genetic instability and oncogenesis. The present study aimed to assess the relationship between the XPC Ala499Val (rs2228000 C>T) and Lys939Gln (rs2228001 A>C) non-synonymous polymorphisms and susceptibility to chronic myeloid leukemia (CML) pathogenesis, disease progression and the response to targeted therapeutic regimen, imatinib mesylate. METHODS This case-control study included 212 cases and 212 controls, and the genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism assays. RESULTS Our results showed significant association of variant CT (odds ratio = 1.92, 95% confidence interval = 1.21-3.06, p = 0.003) and TT (odds ratio = 2.84, 95% confidence interval = 1.22-6.71, p = 0.007) genotypes in patients with the XPC Ala499Val polymorphism and CML risk. In addition, these genotypes were associated with CML progression to advanced phases (p = 0.006), splenomegaly (p = 0.017) and abnormal lactate dehydrogenase levels (p = 0.03). XPC Lys939Gln was found to correlate with a poor response to therapy, showing borderline significant association with minor cytogenetic response (p = 0.08) and a poor molecular response (p = 0.06). Significant association of the Ala499Val and Lys939Gln polymorphisms with prognosis was observed (Hasford high risk, p = 0.031 and p = 0.019, respectively). Haplotype analysis showed a strong correlation of variant TC haplotype with poor therapy responses (minor cytogenetic response, p = 0.019; poor molecular response, p < 0.0001). CONCLUSIONS In conclusion, our results suggest that XPC Ala499Val is a high-penetrance CML susceptibility polymorphism. Both polymorphisms studied are considered as genetic markers with respect to assessing disease progression, therapy response and prognosis in CML patients.
Collapse
Affiliation(s)
- Samyuktha Lakkireddy
- Centre for Biotechnology and Bioinformatics, School of Life Sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), Hyderabad, Telangana, India.,Department of Biotechnology, Jawaharlal Nehru Technological University Anantapur (JNTUA), Ananthapuramu, Andhra Pradesh, India
| | - Sangeetha Aula
- Centre for Biotechnology and Bioinformatics, School of Life Sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), Hyderabad, Telangana, India.,Department of Biotechnology, Jawaharlal Nehru Technological University Anantapur (JNTUA), Ananthapuramu, Andhra Pradesh, India
| | - Atya Kapley
- Centre for Biotechnology and Bioinformatics, School of Life Sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), Hyderabad, Telangana, India.,Environmental Genomics Division, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, Maharashtra, India
| | - Sadashivudu Gundeti
- Department of Medical Oncology, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, Telangana, India
| | - Vijay Kumar Kutala
- Department of Clinical Pharmacology & Therapeutics, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, Telangana, India
| | - Kaiser Jamil
- Centre for Biotechnology and Bioinformatics, School of Life Sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), Hyderabad, Telangana, India.,Department of Biotechnology, Jawaharlal Nehru Technological University Hyderabad (JNTUH), Hyderabad, Telangana, India
| |
Collapse
|
2
|
DNA Repair Genes and Chronic Myeloid Leukemia: ERCC2 (751), XRCC1 (399), XRCC4-Intron 3, XRCC4 (-1394) Gene Polymorphisms. Mediterr J Hematol Infect Dis 2021; 13:e2021020. [PMID: 33747401 PMCID: PMC7938920 DOI: 10.4084/mjhid.2021.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/12/2021] [Indexed: 12/31/2022] Open
|