1
|
Zenlander R, Salter H, Gilg S, Eggertsen G, Stål P. MicroRNAs as Plasma Biomarkers of Hepatocellular Carcinoma in Patients with Liver Cirrhosis-A Cross-Sectional Study. Int J Mol Sci 2024; 25:2414. [PMID: 38397091 PMCID: PMC10888674 DOI: 10.3390/ijms25042414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Ultrasound screening for hepatocellular carcinoma (HCC) in patients with liver cirrhosis has a poor sensitivity for small tumors. Circulating microRNAs (miRNAs) have been explored as HCC biomarkers, but results are diverging. Here, we evaluate if miRNAs up-regulated in HCC tissue can be detected in plasma and used as screening biomarkers for HCC. In this cross-sectional study, plasma, HCC tissue and surrounding non-tumorous liver tissue were collected from liver resections. Tissue miRNAs were identified and quantitated by RNA-sequencing analysis, and the fold-changes between HCC and surrounding liver tissue were calculated. The miRNAs up-regulated in HCCs were then re-analyzed in plasma from the same patients, and the miRNAs with the highest plasma levels were subsequently measured in plasma from an independent cohort of patients with cirrhosis or HCC. In tissues from 84 resected patients, RNA-sequencing detected 197 differentially expressed miRNAs, 40 of which had a raw count above 200 and were analyzed in plasma from the same cohort. Thirty-one miRNAs were selected for further analysis in 200 patients with HCC or cirrhosis. Of these, eleven miRNAs were significantly increased in HCC as compared to cirrhosis patients. Only miR-93-5p and miR-151a-3p were significantly associated with HCC, with an AUC of 0.662. In comparison, alpha-fetoprotein and des-gamma-carboxy prothrombin yielded an AUC of 0.816, which increased to 0.832 if miR-93-5p and miR-151a-3p were added. When including sex and age, the addition of miR-93-5p and miR-151a-3p did not further improve the AUC (from 0.910 to 0.911). In conclusion, micro-RNAs up-regulated in HCCs are detectable in plasma but have a poor performance as screening biomarkers of HCC.
Collapse
Affiliation(s)
- Robin Zenlander
- Department of Clinical Chemistry, Karolinska University Hospital, 141 86 Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden
- Department of Medicine, Huddinge, Karolinska Institutet, 141 86 Stockholm, Sweden (P.S.)
| | - Hugh Salter
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Stefan Gilg
- Department of Medicine, Huddinge, Karolinska Institutet, 141 86 Stockholm, Sweden (P.S.)
| | - Gösta Eggertsen
- Department of Clinical Chemistry, Karolinska University Hospital, 141 86 Stockholm, Sweden
- Department of Medicine, Huddinge, Karolinska Institutet, 141 86 Stockholm, Sweden (P.S.)
| | - Per Stål
- Department of Medicine, Huddinge, Karolinska Institutet, 141 86 Stockholm, Sweden (P.S.)
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, 141 86 Stockholm, Sweden
| |
Collapse
|
2
|
Gupta S, Parveen S. Potential role of microRNAs in personalized medicine against hepatitis: a futuristic approach. Arch Virol 2024; 169:33. [PMID: 38245876 DOI: 10.1007/s00705-023-05955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/21/2023] [Indexed: 01/23/2024]
Abstract
MicroRNAs (miRNAs) have been the subject of extensive research for many years, primarily in the context of diseases such as cancer. However, our appreciation of their significance in viral infections, particularly in hepatitis, has increased due to the discovery of their association with both the host and the virus. Hepatitis is a major global health concern and can be caused by various viruses, including hepatitis A to E. This review highlights the key factors associated with miRNAs and their involvement in infections with various viruses that cause hepatitis. The review not only emphasizes the expression profiles of miRNAs in hepatitis but also puts a spotlight on their potential for diagnostics and therapeutic interventions. Ongoing extensive studies are propelling the therapeutic application of miRNAs, addressing both current limitations and potential strategies for the future of miRNAs in personalized medicine. Here, we discuss the potential of miRNAs to influence future medical research and an attempt to provide a thorough understanding of their diverse roles in hepatitis and beyond.
Collapse
Affiliation(s)
- Sonam Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
3
|
Omar MA, Omran MM, Farid K, Tabll AA, Shahein YE, Emran TM, Petrovic A, Lucic NR, Smolic R, Kovac T, Smolic M. Biomarkers for Hepatocellular Carcinoma: From Origin to Clinical Diagnosis. Biomedicines 2023; 11:1852. [PMID: 37509493 PMCID: PMC10377276 DOI: 10.3390/biomedicines11071852] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) and HCC-related deaths has increased over the last few decades. There are several risk factors of HCC such as viral hepatitis (B, C), cirrhosis, tobacco and alcohol use, aflatoxin-contaminated food, pesticides, diabetes, obesity, nonalcoholic fatty liver disease (NAFLD), and metabolic and genetic diseases. Diagnosis of HCC is based on different methods such as imaging ultrasonography (US), multiphasic enhanced computed tomography (CT), magnetic resonance imaging (MRI), and several diagnostic biomarkers. In this review, we examine the epidemiology of HCC worldwide and in Egypt as well as risk factors associated with the development of HCC and, finally, provide the updated diagnostic biomarkers for the diagnosis of HCC, particularly in the early stages of HCC. Several biomarkers are considered to diagnose HCC, including downregulated or upregulated protein markers secreted during HCC development, circulating nucleic acids or cells, metabolites, and the promising, recently identified biomarkers based on quantitative proteomics through the isobaric tags for relative and absolute quantitation (iTRAQ). In addition, a diagnostic model used to improve the sensitivity of combined biomarkers for the diagnosis of early HCC is discussed.
Collapse
Affiliation(s)
- Mona A. Omar
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt;
| | - Mohamed M. Omran
- Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt;
| | - Khaled Farid
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura 35524, Egypt;
| | - Ashraf A. Tabll
- Microbial Biotechnology Department, National Research Centre, Cairo 12622, Egypt
- Immunology Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Yasser E. Shahein
- Molecular Biology Department, National Research Centre, Cairo 12622, Egypt
| | - Tarek M. Emran
- Clinical Pathology Department, Faculty of Medicine, Al-Azhar University, New Damietta 34517, Egypt;
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Nikola R. Lucic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Tanja Kovac
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| |
Collapse
|
4
|
Roles of microRNAs in Hepatitis C Virus Replication and Pathogenesis. Viruses 2022; 14:v14081776. [PMID: 36016398 PMCID: PMC9413378 DOI: 10.3390/v14081776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is associated with the development of chronic liver diseases, e.g., fibrosis, cirrhosis, even hepatocellular carcinoma, and/or extra-hepatic diseases such as diabetes. As an obligatory intracellular pathogen, HCV absolutely relies on host cells to propagate and is able to modulate host cellular factors in favor of its replication. Indeed, lots of cellular factors, including microRNAs (miRNAs), have been identified to be dysregulated during HCV infection. MiRNAs are small noncoding RNAs that regulate protein synthesis of their targeting mRNAs at the post-transcriptional level, usually by suppressing their target gene expression. The miRNAs dysregulated during HCV infection could directly or indirectly modulate HCV replication and/or induce liver diseases. Regulatory mechanisms of various miRNAs in HCV replication and pathogenesis have been characterized. Some dysregulated miRNAs have been considered as the biomarkers for the detection of HCV infection and/or HCV-related diseases. In this review, we intend to briefly summarize the identified miRNAs functioning at HCV replication and pathogenesis, focusing on the recent developments.
Collapse
|
5
|
Huang Y, Chen Y, Tu S, Zhang J, Qiu Y, Yu W. Diagnostic accuracy of circulating microRNAs for hepatitis C virus-associated hepatocellular carcinoma: a systematic review and meta-analysis. BMC Infect Dis 2022; 22:323. [PMID: 35365115 PMCID: PMC8973602 DOI: 10.1186/s12879-022-07292-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/20/2022] [Indexed: 11/10/2022] Open
Abstract
Aims The purpose of this study was to perform an assessment of circulating microRNAs (miRNAs) as promising biomarker for hepatitis C virus (HCV)-associated hepatocellular carcinoma (HCV-HCC) through a meta-analysis. Methods A comprehensive literatures search extended up to March 1, 2020 in PubMed, Cochrane library, Embase, Web of Science, Scopus and Ovid databases. The collected data were analyzed by random-effects model, the pooled sensitivity (SEN), specificity (SPE), positive and negative likelihood ratios (PLR and NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were used to explore the diagnostic performance of circulating miRNAs. Meta-regression and subgroup analysis were further carried out to explore the heterogeneity. Results A total of 16 articles including 3606 HCV-HCC patients and 3387 HCV patients without HCC were collected. The pooled estimates indicated miRNAs could distinguish HCC patients from chronic hepatitis C (CHC) and HCV-associated liver cirrhosis (HCV-LC), with a SEN of 0.83 (95% CI, 0.79–0.87), a SPE of 0.77 (95% CI, 0.71–0.82), a DOR of 17 (95% CI, 12–28), and an AUC of 0.87 (95% CI, 0.84–0.90). The combination of miRNAs and AFP showed a better diagnostic accuracy than each alone. Subgroup analysis demonstrated that diagnostic accuracy of miRNAs was better for plasma types, up-regulated miRNAs, and miRNA clusters. There was no evidence of publication bias in Deeks’ funnel plot. Conclusions Circulating miRNAs, especially for miRNA clusters, have a relatively high diagnostic value for HCV-HCC from CHC and HCV-LC. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07292-8.
Collapse
Affiliation(s)
- Yicheng Huang
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yingsha Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajie Zhang
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Debes JD, Romagnoli PA, Prieto J, Arrese M, Mattos AZ, Boonstra A. Serum Biomarkers for the Prediction of Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:1681. [PMID: 33918270 PMCID: PMC8038187 DOI: 10.3390/cancers13071681] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of global cancer death. Major etiologies of HCC relate to chronic viral infections as well as metabolic conditions. The survival rate of people with HCC is very low and has been attributed to late diagnosis with limited treatment options. Combining ultrasound and the biomarker alpha-fetoprotein (AFP) is currently one of the most widely used screening combinations for HCC. However, the clinical utility of AFP is controversial, and the frequency and operator-dependence of ultrasound lead to a variable degree of sensitivity and specificity across the globe. In this review, we summarize recent developments in the search for non-invasive serum biomarkers for early detection of HCC to improve prognosis and outcome for patients. We focus on tumor-associated protein markers, immune mediators (cytokines and chemokines), and micro-RNAs in serum or circulating extracellular vesicles and examine their potential for clinical application.
Collapse
Affiliation(s)
- José D. Debes
- Department of Gastroenterology and Hepatology, Erasmus MC Rotterdam, 3015 CE Rotterdam, The Netherlands
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pablo A. Romagnoli
- Centro de Investigaciones en Medicina Translacional “Severo Amuchastegui” (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba 5016, Argentina;
| | - Jhon Prieto
- Centro de Enfermedades Hepaticas y Digestivas, Bogota CS412, Colombia;
| | - Marco Arrese
- Department of Gastroenterology, Escuela de Medicina, & Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330077, Chile;
| | - Angelo Z. Mattos
- Graduate Program in Medicine: Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porte Alegre 90050-170, Brazil;
| | - André Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC Rotterdam, 3015 CE Rotterdam, The Netherlands
| | | |
Collapse
|
7
|
Ghafouri-Fard S, Honarmand Tamizkar K, Hussen BM, Taheri M. MicroRNA signature in liver cancer. Pathol Res Pract 2021; 219:153369. [PMID: 33626406 DOI: 10.1016/j.prp.2021.153369] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Liver cancer is the 7th utmost frequent neoplasm and the 4th principal source of cancer deaths. This malignancy is linked with several environmental and lifestyle-related factors emphasizing the role of epigenetics in its pathogenesis. MicroRNAs (miRNAs) have been regarded as potent epigenetic mechanisms partaking in the pathogenesis of liver cancer. Dysregulation of miRNAs has been related with poor outcome of patients with liver cancer. In the current manuscript, we provide a concise review of the results of recent studies about the role of miRNAs in the progression of liver cancer and their diagnostic and prognostic utility.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
The Relevance of MicroRNAs in the Pathogenesis and Prognosis of HCV-Disease: The Emergent Role of miR-17-92 in Cryoglobulinemic Vasculitis. Viruses 2020; 12:v12121364. [PMID: 33260407 PMCID: PMC7761224 DOI: 10.3390/v12121364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022] Open
Abstract
Hepatitis C virus (HCV) is a major public health problem. HCV is a hepatotropic and lymphotropic virus that leads to hepatocellular carcinoma (HCC) and lymphoproliferative disorders such as cryoglobulinemic vasculitis (CV) and non-Hodgkin's lymphoma (NHL). The molecular mechanisms by which HCV induces these diseases are not fully understood. MicroRNAs (miRNAs) are small non-coding molecules that negatively regulate post-transcriptional gene expression by decreasing their target gene expression. We will attempt to summarize the current knowledge on the role of miRNAs in the HCV life cycle, HCV-related HCC, and lymphoproliferative disorders, focusing on both the functional effects of their deregulation as well as on their putative role as biomarkers, based on association analyses. We will also provide original new data regarding the miR 17-92 cluster in chronically infected HCV patients with and without lymphoproliferative disorders who underwent antiviral therapy. All of the cluster members were significantly upregulated in CV patients compared to patients without CV and significantly decreased in those who achieved vasculitis clinical remission after viral eradication. To conclude, miRNAs play an important role in HCV infection and related oncogenic processes, but their molecular pathways are not completely clear. In some cases, they may be potential therapeutic targets or non-invasive biomarkers of tumor progression.
Collapse
|
9
|
Zhang L, Yang F, Yan Q. Candesartan ameliorates vascular smooth muscle cell proliferation via regulating miR-301b/STAT3 axis. Hum Cell 2020; 33:528-536. [PMID: 32170715 DOI: 10.1007/s13577-020-00333-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022]
Abstract
Excessive vascular smooth muscle cell (VSMC) proliferation contributes to vascular remodeling and stroke during hypertension. Blockade of Angiotensin (AngII) type 1 receptor (AT1R) is shown to effectively attenuate VSMC proliferation and vascular remodeling, while the mechanisms underlying these protective effects are unclear. Here, we investigated whether the amelioration of VSMC proliferation mediated by candesartan, an AT1R blocker, could be associated with miRNA regulation. Based on the published data in rat aortic smooth muscle cells (RASMCs), we discovered that candesartan specifically reversed the AngII-induced decrease of miR-301b level in RASMCs and human aortic smooth muscle cells (HASMCs). Knockdown of miR-301b abolished candesartan-mediated inhibition of HASMC proliferation via promoting cell cycle transition. Computational analysis showed that miR-301b targets at 3'UTR of STAT3. MiR-301b upregulation inhibited the luciferase activity and protein expression of STAT3, whereas miR-301b knockdown increased STAT3 luciferase activity and expression. Furthermore, downregulation of STAT3 markedly abrogated the effects of miR-301b inhibition on candesartan-mediated HASMC proliferation, invasion, and migration. Collectively, this study suggests that miR-301b may be a novel molecular target of candesartan and provides a new understanding for the mechanisms underlying the cardiovascular effects of candesartan.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pharmacy, Xiantao First People's Hospital, No. 29 Mianzhou Road, Xiantao, 433000, Hubei, China.
| | - Fan Yang
- Department of Pharmacy, Xiantao First People's Hospital, No. 29 Mianzhou Road, Xiantao, 433000, Hubei, China
| | - Qiong Yan
- Department of Pharmacy, Huazhong University of Science and Technology Hospital, Wuhan, 430074, Hubei, China
| |
Collapse
|
10
|
|