1
|
Pérez M, Lozano JJ, Ingelmo-Torres M, Domenech M, Fernández Ramón C, Witjes JA, van der Heijden AG, Requena MJ, Coy A, Calderon R, Mellado B, Alcaraz A, Vilaseca A, Ribal MJ. Biomarker-Based Nomogram to Predict Neoadjuvant Chemotherapy Response in Muscle-Invasive Bladder Cancer. Biomedicines 2025; 13:740. [PMID: 40149716 PMCID: PMC11939915 DOI: 10.3390/biomedicines13030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/02/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: The aim of this study was to identify response prediction and prognostic biomarkers in muscle-invasive bladder cancer (MIBC) patients undergoing neoadjuvant chemotherapy (NAC). Methods: A retrospective multicentre study including 191 patients with MIBC who received NAC previous to radical cystectomy (RC) between 1996 and 2013. Gene expression patterns were analysed in 34 samples from transurethral resection of the bladder (TURB) using Illumina microarrays. The expression levels of 45 selected differentially expressed genes between responders and non-responders to NAC were validated by quantitative PCR in an independent cohort of 157 patients. Regression analysis was used to identify predictors of downstaging and relapse. A nomogram for predicting downstaging and relapse-including clinicopathological and gene expression variables-was developed. Results: The expression levels of 1352 transcripts differed between responders and non-responders to NAC. A nomogram based on the most predictive clinical variables (age, Tis (in situ), gender, history of NMIBC, and lymphadenopathy) and genes selected following the Akaike information criterion (AIC) (CBTB16, CHMP6, DDX54, CASP8, LOR, and PLEC) was then created. In addition, a three-gene expression prognostic model to predict tumour relapse was generated. This model was able to discriminate between two groups of patients with a significantly different probability of tumour relapse (HR: 2.11; CI: 1.16-3.83, p = 0.01). Conclusions: Our nomogram based on gene expression and clinical data is a useful tool to predict downstaging and tumour relapse after NAC in MIBC patients. Further validation is warranted.
Collapse
Affiliation(s)
- Meritxell Pérez
- Department of Urology, Hospital Universitari Terrassa, 08221 Terrassa, Spain;
| | - Juan José Lozano
- Plataforma Bioinformatica, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Mercedes Ingelmo-Torres
- Department of Urology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Montserrat Domenech
- Medical Oncology Department, Fundació Althaia, Xarxa Assintencial Universitària de Manresa, 08242 Manresa, Spain
| | - Caterina Fernández Ramón
- Urology Department, Fundació Althaia, Xarxa Assintencial Universitària de Manresa, 08242 Manresa, Spain
| | - J. Alfred Witjes
- Department of Urology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | | | - Maria José Requena
- Department of Urology, Reina Sofía University Hospital, IMIBIC, Cordoba University, 14014 Córdoba, Spain
| | - Antonio Coy
- Fundación Instituto Valenciano de Oncologia (IVO), 46009 Valencia, Spain
| | - Ricard Calderon
- Department of Urology, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Begoña Mellado
- Translational Genomics and Targeted Therapeutics in Solid Tumors, Medical Oncology Department, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Uro-Oncology Unit, Medical Oncology Department, Hospital Clínic de Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Antonio Alcaraz
- Uro-Oncology Unit, Department of Urology, Hospital Clinic de Barcelona, 08036 Barcelona, Spain
| | - Antoni Vilaseca
- Uro-Oncology Unit, Department of Urology, Hospital Clinic de Barcelona, 08036 Barcelona, Spain
| | - Maria J. Ribal
- Uro-Oncology Unit, Department of Urology, Hospital Clinic de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
2
|
Lin Z, Sun H, Zhao Z, Wang A. Identifying potential drug targets for seborrheic keratosis through druggable genome-wide Mendelian randomization and colocalization analysis. Arch Dermatol Res 2025; 317:359. [PMID: 39918628 DOI: 10.1007/s00403-025-03875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 02/09/2025]
Abstract
Seborrheic keratosis (SK) is the most prevalent benign epidermal tumor in adults, characterized by complex pathogenesis and diverse clinical subtypes. This study systematically evaluated the genetic susceptibility and identified novel therapeutic targets for SK. We applied two-sample Mendelian randomization (MR) using cis-eQTL data for druggable genes in blood and SK genome-wide association study (GWAS) data to identify causal genes. Sensitivity and colocalization analyses were performed to assess MR reliability and estimate the likelihood of shared causal variants between cis-eQTLs of druggable genes and SK. For additional validation, we conducted enrichment analysis, phenome-wide association analysis, and candidate drug prediction to further interpret our findings. The expression levels of 18 druggable genes were significantly associated with SK susceptibility (adjusted p-value [FDR] < 0.05), of which 8 were identified as risk factors for SK, while 10 significantly reduced SK predisposition. The susceptibility of SK was likely linked to a shared causal variant with two significant druggable genes, CASP8 (OR = 0.725, 95%CI: 0.622-0.844, PPH4 = 0.907) and TSSK6 (OR = 0.478, 95%CI: 0.327-0.696, PPH4 = 0.970). Functional analyses revealed CASP8 and TSSK6 may influence SK onset and progression through mechanisms cell differentiation and programmed apoptosis regulation. CASP8 and TSSK6 stand out as the most promising potential drug targets for reducing the susceptibility of SK. Our findings identify potential drug targets and provide valuable insights for future SK drug development.
Collapse
Affiliation(s)
- Zhipeng Lin
- Department of Dermatology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023, China
| | - Hongyong Sun
- Department of Dermatology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023, China
| | - Zeng Zhao
- Department of Dermatology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023, China
| | - Aoxue Wang
- Department of Dermatology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023, China.
| |
Collapse
|
3
|
Chen B, Deng T, Deng L, Yu H, He B, Chen K, Zheng C, Wang D, Wang Y, Chen G. Identification of tumour immune microenvironment-related alternative splicing events for the prognostication of pancreatic adenocarcinoma. BMC Cancer 2021; 21:1211. [PMID: 34772375 PMCID: PMC8590242 DOI: 10.1186/s12885-021-08962-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Pancreatic adenocarcinoma (PAAD) is characterized by low antitumour immune cell infiltration in an immunosuppressive microenvironment. This study aimed to systematically explore the impact on prognostic alternative splicing events (ASs) of tumour immune microenvironment (TIME) in PAAD. METHODS The ESTIMATE algorithm was implemented to compute the stromal/immune-related scores of each PAAD patient, followed by Kaplan-Meier (KM) survival analysis of patients with different scores grouped by X-tile software. TIME-related differentially expressed ASs (DEASs) were determined and evaluated through functional annotation analysis. In addition, Cox analyses were implemented to construct a TIME-related signature and an AS clinical nomogram. Moreover, comprehensive analyses, including gene set enrichment analysis (GSEA), immune infiltration, immune checkpoint gene expression, and tumour mutation were performed between the two risk groups to understand the potential mechanisms. Finally, Cytoscape was implemented to illuminate the AS-splicing factor (SF) regulatory network. RESULTS A total of 437 TIME-related DEASs significantly related to PAAD tumorigenesis and the formation of the TIME were identified. Additionally, a robust TIME-related prognostic signature based on seven DEASs was generated, and an AS clinical nomogram combining the signature and four clinical predictors also exhibited prominent discrimination by ROC (0.762 ~ 0.804) and calibration curves. More importantly, the fractions of CD8 T cells, regulatory T cells and activated memory CD4 T cells were lower, and the expression of four immune checkpoints-PD-L1, CD47, CD276, and PVR-was obviously higher in high-risk patients. Finally, functional analysis and tumour mutations revealed that aberrant immune signatures and activated carcinogenic pathways in high-risk patients may be the cause of the poor prognosis. CONCLUSION We extracted a list of DEASs associated with the TIME through the ESTIMATE algorithm and constructed a prognostic signature on the basis of seven DEASs to predict the prognosis of PAAD patients, which may guide advanced decision-making for personalized precision intervention.
Collapse
Affiliation(s)
- Bo Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tuo Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liming Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haitao Yu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bangjie He
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaiyu Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chongming Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Daojie Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Division of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.
| | - Gang Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China. .,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Hashemi M, Aftabi S, Moazeni-Roodi A, Sarani H, Wiechec E, Ghavami S. Association of CASP8 polymorphisms and cancer susceptibility: A meta-analysis. Eur J Pharmacol 2020; 881:173201. [PMID: 32442541 DOI: 10.1016/j.ejphar.2020.173201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Caspase-8 plays is an essential enzyme in apoptosis pathway. Several investigation have been done to identify the relation between CASP8 polymorphisms and different human cancers, but, the findings are still debated. The aim of the current investigation is to assess if CASP8 rs3834129 (-652 6N insertion/deletion), rs1045485 G > C, rs3769818 G > A, rs6723097 A > C, rs3769821 T > C, rs13113 T > A, rs3769825 G > A, rs2293554 A > C, and rs10931936 C > T polymorphisms are linked to susceptibility of cancer. Our team has extracted the eligible studies up to July 4, 2019, from different sources. Pooled odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were estimated to quantitatively evaluate the association between CASP8 polymorphisms and cancer susceptibility. Our results showed that the rs3834129 and rs1045485 polymorphisms meaningfully reduced the risk of cancer, while the rs3769818, rs3769821 and rs3769825 polymorphisms considerably increased cancer susceptibility. No association of rs6723097, rs13113, rs2293554 and rs10931936 polymorphisms was observed with cancer susceptibility. The CASP8 rs3834129 polymorphism reduced the risk of gastrointestinal, digestive tract, colorectal, breast and lung cancers. Furthermore, the cancer risk was decreased in Asian and Caucasian populations as well as population- and hospital-based studies due to this polymorphism. There was not any relation between this gene polymorphism and the risk of prostate and cervical cancer development. Regarding the CASP8 rs1045485 polymorphism, the reduced breast cancer risk along with the risk of cancer in Caucasians, population- and hospital-based studies were observed.
Collapse
Affiliation(s)
- Mohammad Hashemi
- Genetics of Non-communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Sajjad Aftabi
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Abdolkarim Moazeni-Roodi
- Tropical and Communicable Diseases Research Centre, Iranshahr University of Medical Sciences, Iranshahr, Iran; Department of Clinical Biochemistry, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Hosna Sarani
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Emilia Wiechec
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Faculty of Medicine, University of Technology in Katowice, Katowice, Poland; Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Canada.
| |
Collapse
|
5
|
Lourenço GJ, Oliveira C, Carvalho BS, Torricelli C, Silva JK, Gomez GVB, Rinck-Junior JA, Oliveira WL, Vazquez VL, Serrano SV, Moraes AM, Lima CSP. Inherited variations in human pigmentation-related genes modulate cutaneous melanoma risk and clinicopathological features in Brazilian population. Sci Rep 2020; 10:12129. [PMID: 32699307 PMCID: PMC7376158 DOI: 10.1038/s41598-020-68945-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/04/2020] [Indexed: 01/29/2023] Open
Abstract
Ultraviolet light exposure and cutaneous pigmentation are important host risk factors for cutaneous melanoma (CM), and it is well known that inherited ability to produce melanin varies in humans. The study aimed to identify single-nucleotide variants (SNVs) on pigmentation-related genes with importance in risk and clinicopathological aspects of CM. The study was conducted in two stages. In stage 1, 103 CM patients and 103 controls were analyzed using Genome-Wide Human SNV Arrays in order to identify SNVs in pigmentation-related genes, and the most important SNVs were selected for data validation in stage 2 by real-time polymerase-chain reaction in 247 CM patients and 280 controls. ADCY3 c.675+9196T>G, CREB1 c.303+373G>A, and MITF c.938-325G>A were selected for data validation among 74 SNVs. Individuals with CREB1 GA or AA genotype and allele "A" were under 1.79 and 1.47-fold increased risks of CM than others, respectively. Excesses of CREB1 AA and MITF AA genotype were seen in patients with tumors at Clark levels III to V (27.8% versus 13.7%) and at III or IV stages (46.1% versus 24.9%) compared to others, respectively. When compared to others, patients with ADCY3 TT had 1.89 more chances of presenting CM progression, and those with MITF GA or AA had 2.20 more chances of evolving to death by CM. Our data provide, for the first time, preliminary evidence that inherited abnormalities in ADCY3, CREB1, and MITF pigmentation-related genes, not only can increase the risk to CM, but also influence CM patients' clinicopathological features.
Collapse
Affiliation(s)
- Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Cristiane Oliveira
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Benilton Sá Carvalho
- Department of Statistics, Institute of Mathematics, Statistic, and Computer Science, University of Campinas, Campinas, São Paulo, Brazil
| | - Caroline Torricelli
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Janet Keller Silva
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Gabriela Vilas Bôas Gomez
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - José Augusto Rinck-Junior
- Clinical Oncology Service, Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Rua Alexander Fleming, 181, Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, Brazil
- A.C. Camargo Cancer Center, São Paulo, São Paulo, Brazil
| | - Wesley Lima Oliveira
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Vinicius Lima Vazquez
- Melanoma and Sarcoma Surgery Department, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | | - Aparecida Machado Moraes
- Clinical Oncology Service, Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Rua Alexander Fleming, 181, Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, Brazil
| | - Carmen Silvia Passos Lima
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil.
- Clinical Oncology Service, Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Rua Alexander Fleming, 181, Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, Brazil.
| |
Collapse
|