1
|
D’Angelo C, Trecca M, Carpentieri A, Artini M, Selan L, Tutino ML, Papa R, Parrilli E. Cold-Azurin, a New Antibiofilm Protein Produced by the Antarctic Marine Bacterium Pseudomonas sp. TAE6080. Mar Drugs 2024; 22:61. [PMID: 38393032 PMCID: PMC10890351 DOI: 10.3390/md22020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Biofilm is accountable for nosocomial infections and chronic illness, making it a serious economic and public health problem. Staphylococcus epidermidis, thanks to its ability to form biofilm and colonize biomaterials, represents the most frequent causative agent involved in biofilm-associated infections of medical devices. Therefore, the research of new molecules able to interfere with S. epidermidis biofilm formation has a remarkable interest. In the present work, the attention was focused on Pseudomonas sp. TAE6080, an Antarctic marine bacterium able to produce and secrete an effective antibiofilm compound. The molecule responsible for this activity was purified by an activity-guided approach and identified by LC-MS/MS. Results indicated the active protein was a periplasmic protein similar to the Pseudomonas aeruginosa PAO1 azurin, named cold-azurin. The cold-azurin was recombinantly produced in E. coli and purified. The recombinant protein was able to impair S. epidermidis attachment to the polystyrene surface and effectively prevent biofilm formation.
Collapse
Affiliation(s)
- Caterina D’Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.L.T.)
| | - Marika Trecca
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.T.); (M.A.); (L.S.); (R.P.)
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.L.T.)
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.T.); (M.A.); (L.S.); (R.P.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.T.); (M.A.); (L.S.); (R.P.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.L.T.)
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.T.); (M.A.); (L.S.); (R.P.)
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (A.C.); (M.L.T.)
| |
Collapse
|
2
|
Oliveira AS, Saraiva LM, Carvalho SM. Staphylococcus epidermidis biofilms undergo metabolic and matrix remodeling under nitrosative stress. Front Cell Infect Microbiol 2023; 13:1200923. [PMID: 37469594 PMCID: PMC10352803 DOI: 10.3389/fcimb.2023.1200923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Staphylococcus epidermidis is a commensal skin bacterium that forms host- and antibiotic-resistant biofilms that are a major cause of implant-associated infections. Most research has focused on studying the responses to host-imposed stresses on planktonic bacteria. In this work, we addressed the open question of how S. epidermidis thrives on toxic concentrations of nitric oxide (NO) produced by host innate immune cells during biofilm assembly. We analyzed alterations of gene expression, metabolism, and matrix structure of biofilms of two clinical isolates of S. epidermidis, namely, 1457 and RP62A, formed under NO stress conditions. In both strains, NO lowers the amount of biofilm mass and causes increased production of lactate and decreased acetate excretion from biofilm glucose metabolism. Transcriptional analysis revealed that NO induces icaA, which is directly involved in polysaccharide intercellular adhesion (PIA) production, and genes encoding proteins of the amino sugar pathway (glmM and glmU) that link glycolysis to PIA synthesis. However, the strains seem to have distinct regulatory mechanisms to boost lactate production, as NO causes a substantial upregulation of ldh gene in strain RP62A but not in strain 1457. The analysis of the matrix components of the staphylococcal biofilms, assessed by confocal laser scanning microscopy (CLSM), showed that NO stimulates PIA and protein production and interferes with biofilm structure in a strain-dependent manner, but independently of the Ldh level. Thus, NO resistance is attained by remodeling the staphylococcal matrix architecture and adaptation of main metabolic processes, likely providing in vivo fitness of S. epidermidis biofilms contacting NO-proficient macrophages.
Collapse
|
3
|
Pulsed Electromagnetic Fields Disrupt Staphylococcus epidermidis Biofilms and Enhance the Antibiofilm Efficacy of Antibiotics. Microbiol Spectr 2022; 10:e0194922. [PMID: 36314923 PMCID: PMC9769884 DOI: 10.1128/spectrum.01949-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Staphylococcus epidermidis is implicated in a multitude of human infections and is one of the major causes of clinical infections in hospitals, especially at surgical sites and on indwelling medical devices, such as orthopedic implants. These infections are especially dangerous because of the S. epidermidis propensity to form biofilms, which increases resistance to antibiotics and the natural immune response. This study investigated pulsed electromagnetic fields (PEMF) as a potential treatment to combat such infections, as PEMF exposure was expected to disrupt the electrostatic forces that adhere staphylococcal cells to surfaces and to one another. To test the effect of PEMF on biofilms, S. epidermidis cultures were exposed to PEMF at various durations either during the growth phase or after a full biofilm had formed. In addition, cells were exposed to PEMF and concomitant antibiotic treatment. Biofilm viability was quantified by both crystal violet and alamarBlue assays and scanning electron microscopy. The results demonstrated that PEMF significantly inhibited biofilm formation and disrupted preformed biofilms in vitro while also showing synergistic biofilm inhibition when combined with antibiotics. These combined results indicate that PEMF should be considered a promising novel technique for treating S. epidermidis biofilm infections and undergo further testing in vivo. IMPORTANCE Antibiotic resistance and biofilm infections are major issues in health care because of the lack of a successful treatment modality and poor patient outcomes. These infections are a particular issue following orthopedic surgery or trauma wherein an infection may form on an orthopedic implant or patient's bone. The presented study demonstrates that pulsed electromagnetic fields may be a promising novel treatment for such infections and can overcome the medical challenges presented by biofilm formation. Furthermore, the effects demonstrated are even greater when combining pulsed electromagnetic field therapy with traditional antibiotics.
Collapse
|
4
|
Wang Z, Zhang P, Huang C, Guo Y, Dong X, Li X. Conjunctival sac bacterial culture of patients using levofloxacin eye drops before cataract surgery: a real-world, retrospective study. BMC Ophthalmol 2022; 22:328. [PMID: 35907940 PMCID: PMC9338605 DOI: 10.1186/s12886-022-02544-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Background The use of antibiotics preoperatively is effective to decrease the incidence of ocular bacterial infections but may lead to high resistance rate, especially on patients with multi-risk clinical factors. This study systematically analyzed real-world data (RWD) of patients to reveal the association between clinical factors and conjunctival sac bacterial load and offer prophylaxis suggestions. Methods We retrieved RWD of patients using levofloxacin eye drops (5 mL: 24.4 mg, 4 times a day for 3 days) preoperatively. Retrieved data included information on the conjunctival sac bacterial culture, sex, presence of hypertension and diabetes mellitus (DM), and history of hospital-based surgeries. Data was analyzed using SPSS 24.0. Results RWD of 15,415 cases (patients) were retrieved. Among these patients, 5,866 (38.1%) were males and 9,549 (61.9%) females. 5,960 (38.7%) patients had a history of hypertension, and 3,493 (22.7%) patients had a history of DM. 7,555 (49.0%) patients had a history of hospital-based operations. There were 274 (1.8%) positive bacterial cultures. Male patients with hypertension and DM may be at increased risk of having positive bacterial cultures (P < 0.05). Staphylococcus epidermidis (n = 56, 20.4%), Kocuria rosea (n = 37, 13.5%), and Micrococcus luteus (n = 32, 11.7%) were the top 3 isolated strains. Most bacterial strains were resistant to various antibiotics except rifampin, and 82.5% (33 of 40 isolates) of Staphylococcus epidermidis isolates had multidrug antibiotic resistance. Numbers of culture-positive Staphylococcus epidermidis isolates in the male group and non-DM group were greater than those in the female and DM groups, respectively. Micrococcus luteus (n = 11, 8.8%) was found less frequently in non-hypertension group than in hypertension group. Conclusion Sex (Male) and the presence of hypertension and DM are risk factors for greater conjunctival sac bacterial loads. We offer a prophylactic suggestion based on the combined use of levofloxacin and rifampin. However, this approach may aggravate risk of multidrug resistance.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Pei Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Chen Huang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China.,Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Yining Guo
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Xuhe Dong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Xuemin Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China. .,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
5
|
Loza-Correa M, Yousuf B, Ramirez-Arcos S. Staphylococcus epidermidis undergoes global changes in gene expression during biofilm maturation in platelet concentrates. Transfusion 2021; 61:2146-2158. [PMID: 33904608 DOI: 10.1111/trf.16418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Staphylococcus epidermidis forms surface-attached aggregates (biofilms) when grown in platelet concentrates (PCs). Comparative transcriptome analyses were undertaken to investigate differential gene expression of S. epidermidis biofilms grown in PCs. STUDY DESIGN AND METHODS Two S. epidermidis strains isolated from human skin (AZ22 and AZ39) and one strain isolated from contaminated PCs (ST02) were grown in glucose-supplemented Trypticase Soy Broth (TSBg) and PCs. RNA was extracted and sequenced using Illumina HiSeq. Differential expression analysis was done using DESeq, and significantly differentially expressed genes (DEGs) were selected. DEGs were subjected to Kyoto encyclopedia of genes and genomes and Gene Ontology analyses. Differential gene expression was validated with quantitative reverse transcription-PCR. RESULTS A total of 436, 442, and 384 genes were expressed in AZ22, AZ39, and ST02, respectively. DEG analysis showed that 170, 172, and 117 genes were upregulated in PCs in comparison to TSBg, whereas 120, 135, and 89 genes were downregulated (p < .05) in mature biofilms of AZ22, AZ39, and ST02, respectively. Twenty-seven DEGs were shared by all three strains. While 76 DEGs were shared by AZ22 and AZ39, only 34 and 21 DEGs were common between ST02, and AZ22 and AZ39, respectively. Significant transcriptional expression changes were observed in genes involved in platelet-bacteria interaction, biofilm formation, production of virulence factors, and resistance to antimicrobial peptides and antibiotics. CONCLUSION Differential gene expression in S. epidermidis is triggered by the stressful PC storage environment. Upregulation of virulence and antimicrobial resistance genes could have clinical implications for transfusion patients.
Collapse
Affiliation(s)
- Maria Loza-Correa
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Basit Yousuf
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sandra Ramirez-Arcos
- Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
França A, Gaio V, Lopes N, Melo LDR. Virulence Factors in Coagulase-Negative Staphylococci. Pathogens 2021; 10:170. [PMID: 33557202 PMCID: PMC7913919 DOI: 10.3390/pathogens10020170] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) have emerged as major pathogens in healthcare-associated facilities, being S. epidermidis, S. haemolyticus and, more recently, S. lugdunensis, the most clinically relevant species. Despite being less virulent than the well-studied pathogen S. aureus, the number of CoNS strains sequenced is constantly increasing and, with that, the number of virulence factors identified in those strains. In this regard, biofilm formation is considered the most important. Besides virulence factors, the presence of several antibiotic-resistance genes identified in CoNS is worrisome and makes treatment very challenging. In this review, we analyzed the different aspects involved in CoNS virulence and their impact on health and food.
Collapse
Affiliation(s)
- Angela França
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (V.G.); (N.L.)
| | | | | | - Luís D. R. Melo
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (V.G.); (N.L.)
| |
Collapse
|
7
|
Wang Z, Huang C, Li X. Research Trends and Hotspot Analysis of Conjunctival Bacteria Based on CiteSpace Software. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2580795. [PMID: 33083458 PMCID: PMC7556104 DOI: 10.1155/2020/2580795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/28/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To sort out the literature related to conjunctival bacteria and summarize research hotspots and trends of this field. MATERIALS AND METHODS The relevant literature data from 1900 to 2019 was retrieved from the Web of Science Core Collection database. After manual selection, each document record includes title, author, keywords, abstract, year, organization, and citation. We imported the downloaded data into CiteSpace V (version 5.5R2) to draw the knowledge map and conduct cooperative network analysis, discipline and journal analysis, cluster analysis, and burst keyword analysis. RESULTS After manual screening, there were 285 relevant papers published in the last 28 years (from 1991 to 2019), and the number is increasing year by year. The publications of conjunctival bacteria were dedicated by 1381 authors of 451 institutions in 56 countries/regions. The United States dominates this field (82 literatures), followed by Germany (23 literatures) and Japan (23 literatures). Overall, most cited papers were published with a focus on molecular biology, genetics, nursing, and toxicology. Most papers fall into the category of ophthalmology, veterinary sciences, and pharmacology and pharmacy. The only organized cluster is the "postantibiotic effect," and the top 5 keywords with the strongest citation bursts include "postoperative endophthalmiti(s)," "infectious keratoconjunctiviti(s)," "conjunctiviti(s)," "resistance," and "diversity". CONCLUSION The global field of conjunctival bacteria has expanded in the last 28 years. The United States contributes most. However, there are little cooperation among authors and institutions. Overall, this bibliometric study organized one cluster, "postantibiotic effect", and identified the top 5 hotspots in conjunctival bacteria research: "postoperative endophthalmiti(s)," "infectious keratoconjunctiviti(s)," "conjunctiviti(s)," "resistance," and "diversity". Thus, further research focuses on these topics that may be more helpful to prevent ocular infection and improve prophylaxis strategies to bring a benefit to patients in the near future.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Chen Huang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
- Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Xuemin Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
8
|
Muharram MM, Abulhamd AT, Aldawsari MF, Alqarni MH, Labrou NE. Development of Staphylococcus Enzybiotics: The Ph28 Gene of Staphylococcus epidermidis Phage PH15 Is a Two-Domain Endolysin. Antibiotics (Basel) 2020; 9:antibiotics9040148. [PMID: 32235599 PMCID: PMC7235722 DOI: 10.3390/antibiotics9040148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
Given the worldwide increase in antibiotic resistant bacteria, bacteriophage derived endolysins represent a very promising new alternative class of antibacterials in the fight against infectious diseases. Endolysins are able to degrade the prokaryotic cell wall, and therefore have potential to be exploited for biotechnological and medical purposes. Staphylococcus epidermidis is a Gram-positive multidrug-resistant (MDR) bacterium of human skin. It is a health concern as it is involved in nosocomial infections. Genome-based screening approach of the complete genome of Staphylococcus virus PH15 allowed the identification of an endolysin gene (Ph28; NCBI accession number: YP_950690). Bioinformatics analysis of the Ph28 protein predicted that it is a two-domain enzyme composed by a CHAP (22-112) and MurNAc-LAA (171-349) domain. Phylogenetic analysis and molecular modelling studies revealed the structural and evolutionary features of both domains. The MurNAc-LAA domain was cloned, and expressed in E. coli BL21 (DE3). In turbidity reduction assays, the recombinant enzyme can lyse more efficiently untreated S. epidermidis cells, compared to other Staphylococcus strains, suggesting enhanced specificity for S. epidermidis. These results suggest that the MurNAc-LAA domain from Ph28 endolysin may represent a promising new enzybiotic.
Collapse
Affiliation(s)
- Magdy Mohamed Muharram
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
- Department of Microbiology, College of Science, Al-Azhar University, Cairo 11884, Egypt;
- Correspondence:
| | - Ashraf Tawfik Abulhamd
- Department of Microbiology, College of Science, Al-Azhar University, Cairo 11884, Egypt;
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Mohamed Hamed Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Nikolaos E. Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece;
| |
Collapse
|