1
|
Ng WM, Wu SN, Huang BM, So EC. Investigating the influence of XAV-939, a tankyrase inhibitor, on the density and gating of erg-mediated K + currents in mouse MA-10 Leydig tumor cells. Eur J Pharmacol 2024; 971:176518. [PMID: 38556119 DOI: 10.1016/j.ejphar.2024.176518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
XAV-939(XAV) is a chemical compound that inhibits the activity of tankyrase. However, the precise way in which XAV alters membrane ionic currents is not well understood. In this study,our goal was to examine the impact of XAV on the ionic currents in mouse MA-10 Leydig cells, specifically focusing on the magnitude, gating properties,and voltage-dependent hysteresis of erg-mediated K+currents(IK(erg)). In our whole-cell current recordings we observed that the addition of XAV inhibited the density of IK(erg) in a concentration-dependent manner with an IC50 of 3.1 μM. Furthermore we found that continued exposure to XAV, further addition of neither liraglutide nor insulin-like growth factor-1 counteracted XAV-mediated inhibition of IK(erg). Additionally the presence of XAV suppressed the mean current versus voltage relationship of IK(erg) across the entire voltage-clamp step analyzed. This compound shifted the steady-state activation curve of IK(erg) to a less negative potential by approximately 12 mV. The presence of XAV increased the time constant of deactivating IK(erg) in MA-10 cells. The voltage-dependent clockwise hysteresis of IK(erg) responding to prolonged upright isosceles-triangular ramp voltage became diminished by adding XAV; moreover subsequent addition of NS3623 effectively reversed XAV-induced decrease of hysteretic area of IK(erg). XAV also inhibited the proliferation of this cell line and the IC50 value of XAV-induced inhibition of cell proliferation was 2.8M. Overall the suppression of IK(erg) by XAV may serve as a significant ionic mechanism that contribute to the functional properties of MA-10 cells. However, it is important to note that this effect cannot be attributed solely to the inhibition of tankyrase.
Collapse
Affiliation(s)
- Woei-Ming Ng
- Department of Urology, An Nan Hospital, China Medical University, Tainan, 70965, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan; School of Medicine, National Sun-Yat Sen University College of Medicine, Kaohsiung, Taiwan; Department of Medical Education and Research, An Nan Hospital, China Medical University, Tainan, Taiwan.
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, National Cheng Kung University College of Medicine, Tainan, 70101, Taiwan.
| | - Edmund Cheung So
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, 70965, Taiwan.
| |
Collapse
|
2
|
Deigin V, Linkova N, Volpina O. Advancement from Small Peptide Pharmaceuticals to Orally Active Piperazine-2,5-dion-Based Cyclopeptides. Int J Mol Sci 2023; 24:13534. [PMID: 37686336 PMCID: PMC10487935 DOI: 10.3390/ijms241713534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The oral delivery of peptide pharmaceuticals has long been a fundamental challenge in drug development. A new chemical platform was designed based on branched piperazine-2,5-diones for creating orally available biologically active peptidomimetics. The platform includes a bio-carrier with "built-in" functionally active peptide fragments or bioactive molecules that are covalently attached via linkers. The developed platform allows for a small peptide to be taken with a particular biological activity and to be transformed into an orally stable compound displaying the same activity. Based on this approach, various peptidomimetics exhibiting hemostimulating, hemosuppressing, and adjuvant activity were prepared. In addition, new examples of a rare phenomenon when enantiomeric molecules demonstrate reciprocal biological activity are presented. Finally, the review summarizes the evolutionary approach of the short peptide pharmaceutical development from the immunocompetent organ separation to orally active cyclopeptides and peptidomimetics.
Collapse
Affiliation(s)
- Vladislav Deigin
- The Laboratory of Synthetic Vaccines of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia;
| | - Natalia Linkova
- The Research Laboratory of the Development of Drug Delivery Systems, St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, St. Petersburg 191036, Russia;
| | - Olga Volpina
- The Laboratory of Synthetic Vaccines of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia;
| |
Collapse
|
3
|
Linkova N, Khavinson V, Diatlova A, Myakisheva S, Ryzhak G. Peptide Regulation of Chondrogenic Stem Cell Differentiation. Int J Mol Sci 2023; 24:ijms24098415. [PMID: 37176122 PMCID: PMC10179481 DOI: 10.3390/ijms24098415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The search for innovative ways to treat osteoarthritis (OA) is an urgent task for molecular medicine and biogerontology. OA leads to disability in persons of middle and older age, while safe and effective methods of treating OA have not yet been discovered. The directed differentiation of mesenchymal stem cells (MSCs) into chondrocytes is considered one of the possible methods to treat OA. This review describes the main molecules involved in the chondrogenic differentiation of MSCs. The peptides synthesized on the basis of growth factors' structures (SK2.1, BMP, B2A, and SSPEPS) and components of the extracellular matrix of cartilage tissue (LPP, CFOGER, CMP, RDG, and N-cadherin mimetic peptide) offer the greatest promise for the regulation of the chondrogenic differentiation of MSCs. These peptides regulate the WNT, ERK-p38, and Smad 1/5/8 signaling pathways, gene expression, and the synthesis of chondrogenic differentiation proteins such as COL2, SOX9, ACAN, etc.
Collapse
Affiliation(s)
- Natalia Linkova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
| | - Vladimir Khavinson
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
- Pavlov Institute of Physiology of Russia Academy of Sciences, Makarova emb. 6, 199034 Saint Petersburg, Russia
| | - Anastasiia Diatlova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
| | - Svetlana Myakisheva
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
| | - Galina Ryzhak
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
| |
Collapse
|
4
|
Chatree K, Sriboonaied P, Phetkong C, Wattananit W, Chanchao C, Charoenpanich A. Distinctions in bone matrix nanostructure, composition, and formation between osteoblast-like cells, MG-63, and human mesenchymal stem cells, UE7T-13. Heliyon 2023; 9:e15556. [PMID: 37153435 PMCID: PMC10160763 DOI: 10.1016/j.heliyon.2023.e15556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Osteoblast-like cells and human mesenchymal stem cells (hMSCs) are frequently employed as osteoprogenitor cell models for evaluating novel biomaterials in bone healing and tissue engineering. In this study, the characterization of UE7T-13 hMSCs and MG-63 human osteoblast-like cells was examined. Both cells can undergo osteogenesis and produce calcium extracellular matrix; however, calcium nodules produced by MG-63 lacked a central mass and appeared flatter than UE7T-13. The absence of growing calcium nodules in MG-63 was discovered by SEM-EDX to be associated with the formation of alternating layers of cells and calcium extracellular matrix. The nanostructure and composition analysis showed that UE7T-13 had a finer nanostructure of calcium nodules with a higher calcium/phosphate ratio than MG-63. Both cells expressed high intrinsic levels of collagen type I alpha 1 chain, while only UE7T-13 expressed high levels of alkaline phosphatase, biomineralization associated (ALPL). High ALP activity in UE7T-13 was not further enhanced by osteogenic induction, but in MG-63, low intrinsic ALP activity was greatly induced by osteogenic induction. These findings highlight the differences between the two immortal osteoprogenitor cell lines, along with some technical notes that should be considered while selecting and interpreting the pertinent in vitro model.
Collapse
Affiliation(s)
- Kamonwan Chatree
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Patsawee Sriboonaied
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Chinnatam Phetkong
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Witoon Wattananit
- Scientific and Technological Equipment Centre, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Chanpen Chanchao
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Adisri Charoenpanich
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
5
|
Prazdnova EV, Mazanko MS, Chistyakov VA, Bogdanova AA, Refeld AG, Kharchenko EY, Chikindas ML. Antimutagenic Activity as a Criterion of Potential Probiotic Properties. Probiotics Antimicrob Proteins 2022; 14:1094-1109. [PMID: 35028920 DOI: 10.1007/s12602-021-09870-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 12/25/2022]
Abstract
The antimutagenic activity of probiotic strains has been reported over several decades of studying the effects of probiotics. However, this activity is rarely considered an important criterion when choosing strains to produce probiotic preparations and functional food. Meanwhile, the association of antimutagenic activity with the prevention of oncological diseases, as well as with a decrease in the spread of resistant forms in the microbiota, indicates its importance for the selection of probiotics. Besides, an antimutagenic activity can be associated with probiotics' broader systemic effects, such as geroprotective activity. The main mechanisms of such effects are considered to be the binding of mutagens, the transformation of mutagens, and inhibition of the transformation of promutagens into antimutagens. Besides, we should consider the possibility of interaction of the microbiota with regulatory processes in eukaryotic cells, in particular, through the effect on mitochondria. This work aims to systematize data on the antimutagenic activity of probiotics and emphasize antimutagenic activity as a significant criterion for the selection of probiotic strains.
Collapse
Affiliation(s)
- Evgeniya V Prazdnova
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia. .,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia.
| | - Maria S Mazanko
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia.,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Vladimir A Chistyakov
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia.,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Anna A Bogdanova
- Evolutionary Biomedicine Laboratory, SCAMT Institute, ITMO University, Saint Petersburg, Russia
| | - Aleksandr G Refeld
- Cell Biophysics Laboratory, SCAMT Institute, ITMO University, Saint Petersburg, Russia
| | - Evgeniya Y Kharchenko
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia.,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
6
|
Avolio F, Martinotti S, Khavinson VK, Esposito JE, Giambuzzi G, Marino A, Mironova E, Pulcini R, Robuffo I, Bologna G, Simeone P, Lanuti P, Guarnieri S, Trofimova S, Procopio AD, Toniato E. Peptides Regulating Proliferative Activity and Inflammatory Pathways in the Monocyte/Macrophage THP-1 Cell Line. Int J Mol Sci 2022; 23:ijms23073607. [PMID: 35408963 PMCID: PMC8999041 DOI: 10.3390/ijms23073607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/18/2022] Open
Abstract
This study evaluates the effects of five different peptides, the Epitalon® tetrapeptide, the Vilon® dipeptide, the Thymogen® dipeptide, the Thymalin® peptide complex, and the Chonluten® tripeptide, as regulators of inflammatory and proliferative processes in the human monocytic THP-1, which is a human leukemia monocytic cell line capable of differentiating into macrophages by PMA in vitro. These peptides (Khavinson Peptides®), characterized by Prof. Khavinson from 1973 onwards, were initially isolated from animal tissues and found to be organ specific. We tested the capacity of the five peptides to influence cell cultures in vitro by incubating THP-1 cells with peptides at certain concentrations known for being effective on recipient cells in culture. We found that all five peptides can modulate key proliferative patterns, increasing tyrosine phosphorylation of mitogen-activated cytoplasmic kinases. In addition, the Chonluten tripeptide, derived from bronchial epithelial cells, inhibited in vitro tumor necrosis factor (TNF) production of monocytes exposed to pro-inflammatory bacterial lipopolysaccharide (LPS). The low TNF release by monocytes is linked to a documented mechanism of TNF tolerance, promoting attenuation of inflammatory action. Therefore, all peptides inhibited the expression of TNF and pro-inflammatory IL-6 cytokine stimulated by LPS on terminally differentiated THP-1 cells. Lastly, by incubating the THP1 cells, treated with the peptides, on a layer of activated endothelial cells (HUVECs activated by LPS), we observed a reduction in cell adhesion, a typical pro-inflammatory mechanism. Overall, the results suggest that the Khavinson Peptides® cooperate as natural inducers of TNF tolerance in monocyte, and act on macrophages as anti-inflammatory molecules during inflammatory and microbial-mediated activity.
Collapse
Affiliation(s)
- Francesco Avolio
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Stefano Martinotti
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Vladimir Kh. Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.K.); (E.M.); (S.T.)
| | - Jessica Elisabetta Esposito
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Giulia Giambuzzi
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Antonio Marino
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Ekaterina Mironova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.K.); (E.M.); (S.T.)
| | - Riccardo Pulcini
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
| | - Iole Robuffo
- Institute of Molecular Genetics, National Research Council, Section of Chieti, 66100 Chieti, Italy;
| | - Giuseppina Bologna
- Department of Medicine and Aging Sciences, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.S.); (P.L.)
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.S.); (P.L.)
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (G.B.); (P.S.); (P.L.)
| | - Simone Guarnieri
- Department of Neuroscience, Center of Advanced Studies and Technology, Imaging and Clinical Sciences, University of Chieti, 66100 Chieti, Italy;
| | - Svetlana Trofimova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.K.); (E.M.); (S.T.)
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Politecnic University of Marche, 60121 Ancona, Italy;
- INRCA-IRCCS, Clinic of Laboratory and Precision Medicine, 60121 Ancona, Italy
| | - Elena Toniato
- Department of Innovative Technology in Medicine and Odontoiatrics, Center of Advanced Studies and Technology University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (S.M.); (J.E.E.); (G.G.); (A.M.); (R.P.)
- Unicamillus—Saint Unicamillus of Health Science, 00131 Rome, Italy
- Correspondence:
| |
Collapse
|
7
|
Kuznik B, Khavinson V, Shapovalov K, Linkova N, Lukyanov S, Smolyakov Y, Tereshkov P, Shapovalov Y, Konnov V, Tsybikov N. Peptide Drug Thymalin Regulates Immune Status in Severe COVID-19 Older Patients. ADVANCES IN GERONTOLOGY 2021. [PMCID: PMC8654498 DOI: 10.1134/s2079057021040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Peptide drug Thymalin, isolated from the calve thymus, is successfully used for the treatment of various immunopathologies, including those in older age groups. The molecular mechanism of the Thymalin immunoprotective action is due to the effects of the short peptides KE, EW, EDP in its composition. These short peptides can specifically bind to double-stranded DNA and/or histone proteins and regulate gene expression, synthesis of immune system proteins, activity of gerontogenes, and stimulate stem cell differentiation. Regulation of immunogenesis is a key factor preventing the development of the “cytokine storm” that develops in severe COVID-19. The purpose of this work is to study the effectiveness of Thymalin in severe COVID-19 in older patients. Patients administered with Thymalin against the background of a standard therapy (n = 36) manifested a more rapid clinical improvement, higher proportions of recovery from lymphopenia, faster normalization of the concentration of C-reactive protein, D-dimer, the number of lymphocytes and NK-cells in the blood, compared to patients who received a standard therapy only (n = 44). Thymalin halved hospital mortality in older patients with severe COVID-19. The results obtained showed the effectiveness of Thymalin administration in the complex therapy of patients with severe COVID-19.
Collapse
Affiliation(s)
- B. Kuznik
- Department of the Normal Physiology, Chita State Medical Academy, 672000 Chita, Russia
| | - V. Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 St. Petersburg, Russia
- The Group of Peptide Regulation of Aging, Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - K. Shapovalov
- Department of the Normal Physiology, Chita State Medical Academy, 672000 Chita, Russia
| | - N. Linkova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 St. Petersburg, Russia
| | - S. Lukyanov
- Department of the Normal Physiology, Chita State Medical Academy, 672000 Chita, Russia
| | - Yu. Smolyakov
- Department of the Normal Physiology, Chita State Medical Academy, 672000 Chita, Russia
| | - P. Tereshkov
- Department of the Normal Physiology, Chita State Medical Academy, 672000 Chita, Russia
| | - Yu. Shapovalov
- Department of the Normal Physiology, Chita State Medical Academy, 672000 Chita, Russia
| | - V. Konnov
- Department of the Normal Physiology, Chita State Medical Academy, 672000 Chita, Russia
| | - N. Tsybikov
- Department of the Normal Physiology, Chita State Medical Academy, 672000 Chita, Russia
| |
Collapse
|
8
|
Peptide Regulation of Gene Expression: A Systematic Review. Molecules 2021; 26:molecules26227053. [PMID: 34834147 PMCID: PMC8619776 DOI: 10.3390/molecules26227053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/22/2022] Open
Abstract
Peptides are characterized by their wide range of biological activity: they regulate functions of the endocrine, nervous, and immune systems. The mechanism of such action of peptides involves their ability to regulate gene expression and protein synthesis in plants, microorganisms, insects, birds, rodents, primates, and humans. Short peptides, consisting of 2-7 amino acid residues, can penetrate into the nuclei and nucleoli of cells and interact with the nucleosome, the histone proteins, and both single- and double-stranded DNA. DNA-peptide interactions, including sequence recognition in gene promoters, are important for template-directed synthetic reactions, replication, transcription, and reparation. Peptides can regulate the status of DNA methylation, which is an epigenetic mechanism for the activation or repression of genes in both the normal condition, as well as in cases of pathology and senescence. In this context, one can assume that short peptides were evolutionarily among the first signaling molecules that regulated the reactions of template-directed syntheses. This situation enhances the prospects of developing effective and safe immunoregulatory, neuroprotective, antimicrobial, antiviral, and other drugs based on short peptides.
Collapse
|
9
|
Deigin VI, Vinogradova JE, Vinogradov DL, Krasilshchikova MS, Ivanov VT. Thymodepressin-Unforeseen Immunosuppressor. Molecules 2021; 26:molecules26216550. [PMID: 34770959 PMCID: PMC8588242 DOI: 10.3390/molecules26216550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
The paper summarizes the available information concerning the biological properties and biomedical applications of Thymodepressin. This synthetic peptide drug displays pronounced immunoinhibitory activity across a wide range of conditions in vitro and in vivo. The history of its unforeseen discovery is briefly reviewed, and the current as well as potential expansion areas of medicinal practice are outlined. Additional experimental evidence is obtained, demonstrating several potential advantages of Thymodepressin over another actively used immunosuppressor drug, cyclosporin A.
Collapse
Affiliation(s)
- Vladislav I Deigin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Julia E Vinogradova
- Hematology Department, Sechenov First Moscow State Medical University, Russian MOH, Moscow 8-2 Trubetskaya str., 119991 Moscow, Russia
| | - Dmitry L Vinogradov
- Hematology Department, Sechenov First Moscow State Medical University, Russian MOH, Moscow 8-2 Trubetskaya str., 119991 Moscow, Russia
| | - Marina S Krasilshchikova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Vadim T Ivanov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| |
Collapse
|
10
|
Khavinson VK, Linkova NS, Chalisova NI, Ivko OM. The Use of Thymalin for Immunocorrection and Molecular Aspects of Biological Activity. BIOLOGY BULLETIN REVIEWS 2021. [PMCID: PMC8365293 DOI: 10.1134/s2079086421040046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The polypeptide drug thymalin is used for various diseases associated with immune dysfunction, viral and bacterial infections, regeneration normalization, immunodepression, and the depression of hematogenesis after chemical and radiotherapy. The molecular mechanism of the action of thymalin and its components, EW dipeptide (the drug thymogen), the dipeptide KE, and the tripeptide EDP, are analyzed. These short peptides regulate gene expression and the synthesis of heat-shock protein, cytokines, fibrinolysis, gerontogenes, and the differentiation, proliferation, apoptosis of cells. Thymalin and thymogen have practically no side effects and are used for various viral infections. These peptide drugs can likely be effective in the complex therapy for the coronavirus infection COVID-19.
Collapse
Affiliation(s)
- V. Kh. Khavinson
- St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - N. S. Linkova
- St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia
- Academy of Postgraduate Education of the Federal State Budgetary Institution, the Federal Science and Clinic Center of the Federal Medical and Biological Agency, Moscow, Russia
- Belgorod State University, Belgorod, Russia
| | - N. I. Chalisova
- St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - O. M. Ivko
- St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia
| |
Collapse
|
11
|
Peptide KED: Molecular-Genetic Aspects of Neurogenesis Regulation in Alzheimer's Disease. Bull Exp Biol Med 2021; 171:190-193. [PMID: 34173097 DOI: 10.1007/s10517-021-05192-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 10/21/2022]
Abstract
Neuroprotective peptides are promising candidate molecules for the treatment of Alzheimer's disease (AD). Oral application of KED (Lys-Glu-Asp) improved memory and attention in elderly individuals with functional CNS disorders. Peptide KED also restores synaptic plasticity in in vitro model of AD. This review is focused on the analysis of the influence of KED peptide on the expression of genes and synthesis of proteins regulating apoptosis, aging, neurogenesis, and involved in AD pathogenesis. Analysis of published reports and our experimental findings suggests that KED regulates the expression of genes of cell aging and apoptosis (р16, р21), genes (NES, GAP43) and proteins (nestin, GAP43) of the neuronal differentiation, and genes involved in AD pathogenesis (SUMO, APOE, and IGF1). The study the effectiveness of neuroprotective peptide KED in animal models of AD seems to be very important.
Collapse
|
12
|
Khavinson V, Ilina A, Kraskovskaya N, Linkova N, Kolchina N, Mironova E, Erofeev A, Petukhov M. Neuroprotective Effects of Tripeptides-Epigenetic Regulators in Mouse Model of Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:515. [PMID: 34071923 PMCID: PMC8227791 DOI: 10.3390/ph14060515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 01/06/2023] Open
Abstract
KED and EDR peptides prevent dendritic spines loss in amyloid synaptotoxicity in in vitro model of Alzheimer's disease (AD). The objective of this paper was to study epigenetic mechanisms of EDR and KED peptides' neuroprotective effects on neuroplasticity and dendritic spine morphology in an AD mouse model. Daily intraperitoneal administration of the KED peptide in 5xFAD mice from 2 to 4 months of age at a concentration of 400 μg/kg tended to increase neuroplasticity. KED and EDR peptides prevented dendritic spine loss in 5xFAD-M mice. Their action's possible molecular mechanisms were investigated by molecular modeling and docking of peptides in dsDNA, containing all possible combinations of hexanucleotide sequences. Similar DNA sequences were found in the lowest-energy complexes of the studied peptides with DNA in the classical B-form. EDR peptide has binding sites in the promoter region of CASP3, NES, GAP43, APOE, SOD2, PPARA, PPARG, GDX1 genes. Protein products of these genes are involved in AD pathogenesis. The neuroprotective effect of EDR and KED peptides in AD can be defined by their ability to prevent dendritic spine elimination and neuroplasticity impairments at the molecular epigenetic level.
Collapse
Affiliation(s)
- Vladimir Khavinson
- Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (N.L.); (E.M.)
- Pavlov Institute of Physiology of Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| | - Anastasiia Ilina
- Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (N.L.); (E.M.)
| | - Nina Kraskovskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg State Polytechnic University, 195251 Saint Petersburg, Russia; (N.K.); (A.E.)
| | - Natalia Linkova
- Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (N.L.); (E.M.)
| | - Nina Kolchina
- Petersburg Nuclear Physics Institute Named after B.P. Konstantinov, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (N.K.); (M.P.)
- Russian Scientific Center of Radiology and Surgical Technologies Named after A.M. Granov, 197758 Saint Petersburg, Russia
| | - Ekaterina Mironova
- Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (N.L.); (E.M.)
| | - Alexander Erofeev
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg State Polytechnic University, 195251 Saint Petersburg, Russia; (N.K.); (A.E.)
| | - Michael Petukhov
- Petersburg Nuclear Physics Institute Named after B.P. Konstantinov, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (N.K.); (M.P.)
- Russian Scientific Center of Radiology and Surgical Technologies Named after A.M. Granov, 197758 Saint Petersburg, Russia
| |
Collapse
|