1
|
Li Z, Cao W, Sun H, Wang X, Li S, Ran X, Zhang H. Potential clinical and biochemical markers for the prediction of drug-resistant epilepsy: A literature review. Neurobiol Dis 2022; 174:105872. [PMID: 36152944 DOI: 10.1016/j.nbd.2022.105872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/01/2022] Open
Abstract
Drug resistance is a major challenge in the treatment of epilepsy. Drug-resistant epilepsy (DRE) accounts for 30% of all cases of epilepsy and is a matter of great concern because of its uncontrollability and the high burden, mortality rate, and degree of damage. At present, considerable research has focused on the development of predictors to aid in the early identification of DRE in an effort to promote prompt initiation of individualized treatment. While multiple predictors and risk factors have been identified, there are currently no standard predictors that can be used to guide the clinical management of DRE. In this review, we discuss several potential predictors of DRE and related factors that may become predictors in the future and perform evidence rating analysis to identify reliable potential predictors.
Collapse
Affiliation(s)
- ZhiQiang Li
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Cao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - HuiLiang Sun
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - ShanMin Li
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - XiangTian Ran
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Maqbool H, Saleem T, Sheikh N, Asmatullah, Mukhtar M, Javed I, Rehman A. Polymorphism in drug transporter gene ABCB1 is associated with drug resistance in Pakistani epilepsy patients. Epilepsy Res 2021; 178:106814. [PMID: 34844091 DOI: 10.1016/j.eplepsyres.2021.106814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/19/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Despite the best possible medication and treatment protocols, one-third of epilepsy patients have drug resistance which is associated with an elevated risk of mortality and debilitating psychological consequences. P-glycogen encoded by ABCB1 is major drug transporter for a wide variety of AED. To evaluate the complex haplotypic association, genetic and allelic frequency distribution of rs1128503, rs1045642, and rs2032582 polymorphisms of ABCB1 gene with drug resistance in Pakistani pediatric epilepsy patients, we performed this study. A total of 337 individuals including 100 healthy control, 110 drug-resistant patients, and 127 drug-responsive patients were enrolled and genotyped for three polymorphisms. PCR and direct sequencing of DNA were done for genotyping. All the studied SNPs showed a statistically significant association with drug-resistant epilepsy at p < 0.01. In addition, we identified a novel variant at c 0.2678C > A (SCV001712095) position. The haplotype analysis indicated strong linkage disequilibrium between three SNPs. The in-silico analysis indicated that rs2032582 polymorphism at c 0.2677T > A is benign while c 0.2677T > G and c 0.2678C > A are possibly damaging. Our findings showed that pharmacogenetic variants play a key role in disease. Our findings shed light on the pharmacogenomic association of ABCB1 with epilepsy which might facilitate study on pharmacokinetics concerning ethnology.
Collapse
Affiliation(s)
- Hafsa Maqbool
- Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, Lahore 54590, Pakistan
| | - Tayyaba Saleem
- Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, Lahore 54590, Pakistan
| | - Nadeem Sheikh
- Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, Lahore 54590, Pakistan.
| | - Asmatullah
- Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, Lahore 54590, Pakistan
| | - Maryam Mukhtar
- Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, Lahore 54590, Pakistan
| | - Iram Javed
- Department of Pediatric Neurology, Children Hospital & Institute of Child Health, Faisalabad, Pakistan
| | - Atia Rehman
- Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
3
|
Iannaccone T, Sellitto C, Manzo V, Colucci F, Giudice V, Stefanelli B, Iuliano A, Corrivetti G, Filippelli A. Pharmacogenetics of Carbamazepine and Valproate: Focus on Polymorphisms of Drug Metabolizing Enzymes and Transporters. Pharmaceuticals (Basel) 2021; 14:204. [PMID: 33804537 PMCID: PMC8001195 DOI: 10.3390/ph14030204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022] Open
Abstract
Pharmacogenomics can identify polymorphisms in genes involved in drug pharmacokinetics and pharmacodynamics determining differences in efficacy and safety and causing inter-individual variability in drug response. Therefore, pharmacogenomics can help clinicians in optimizing therapy based on patient's genotype, also in psychiatric and neurological settings. However, pharmacogenetic screenings for psychotropic drugs are not routinely employed in diagnosis and monitoring of patients treated with mood stabilizers, such as carbamazepine and valproate, because their benefit in clinical practice is still controversial. In this review, we summarize the current knowledge on pharmacogenetic biomarkers of these anticonvulsant drugs.
Collapse
Affiliation(s)
- Teresa Iannaccone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Carmine Sellitto
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Valentina Manzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Francesca Colucci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Berenice Stefanelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Antonio Iuliano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Giulio Corrivetti
- European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy;
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
4
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|