1
|
Trabelsi N, Othman H, Bedhioufi H, Chouk H, El Mabrouk H, Mahdouani M, Gribaa M, Saad A, H'mida D. Is Tunisia ready for precision medicine? Challenges of medical genomics within a LMIC healthcare system. J Community Genet 2024; 15:339-350. [PMID: 39080231 PMCID: PMC11411033 DOI: 10.1007/s12687-024-00722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
As one of the key tools on the precision medicine workbench, high-throughput genetic testing has enormous promise for improving healthcare outcomes. Tunisia has made tremendous progress in acquiring and implementing the technology in the clinical context. However, current utilization does not ensure the whole range of benefits that high-throughput genomic testing provides which impedes the country's ability to move forward into the new era of precision medicine. This issue is primarily related to the current state of Tunisia's healthcare ecosystem and the sociological attributes of its population, creating numerous challenges that must be addressed. In the current review, we aimed to identify and highlight these challenges that may be prevalent in other low and middle-income countries. Essentially, they fall into three main categories that include the socio-economic landscape in Tunisia, which prevents citizens from engaging in precision medicine activities; the current settings of the healthcare system that lack or miss key components for the successful implementation of precision medicine practices; and the inability of the current infrastructure and resources to handle the various challenges related to genomic data and metadata. We also propose five pillar solutions as a framework for addressing all of these challenges, which could strengthen Tunisia's capability for effective precision medicine implementation in today's clinical environment.
Collapse
Affiliation(s)
- Narjes Trabelsi
- Department of genetics, Farhat Hached University Hospital, Ibn El Jazzar St, Sousse, 4000, Tunisia
- Laboratory of cytogenetics, molecular genetics and reproductive biology (LR03SP02), Farhat Hached University Hospital, Ibn El Jazzar St, Sousse, 4000, Tunisia
- Faculty of Medicine of Sousse, Mohamed Qaroui St, Sousse, 4002, Tunisia
| | - Houcemeddine Othman
- Department of genetics, Farhat Hached University Hospital, Ibn El Jazzar St, Sousse, 4000, Tunisia
- Laboratory of cytogenetics, molecular genetics and reproductive biology (LR03SP02), Farhat Hached University Hospital, Ibn El Jazzar St, Sousse, 4000, Tunisia
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, 9 jubilee Road, Parktown, Johannesburg, 2193, South Africa
| | - Hafsi Bedhioufi
- Interdisciplinary Laboratory of University-Business Management (LIGUE), (LR99ES24), Higher Institute of Accounting and Business Administration (ISCAE), University of La Manouba, Manouba university campus, La Manouba, 2010, Tunisia
| | - Hamza Chouk
- Laboratory of cytogenetics, molecular genetics and reproductive biology (LR03SP02), Farhat Hached University Hospital, Ibn El Jazzar St, Sousse, 4000, Tunisia
- Higher Institute of Biotechnology of Monastir, Taher Haddad St, Monastir, 5000, Tunisia
| | - Haïfa El Mabrouk
- Laboratory of cytogenetics, molecular genetics and reproductive biology (LR03SP02), Farhat Hached University Hospital, Ibn El Jazzar St, Sousse, 4000, Tunisia
- Higher Institute of Biotechnology of Monastir, Taher Haddad St, Monastir, 5000, Tunisia
| | - Marwa Mahdouani
- Laboratory of cytogenetics, molecular genetics and reproductive biology (LR03SP02), Farhat Hached University Hospital, Ibn El Jazzar St, Sousse, 4000, Tunisia
- Higher Institute of Biotechnology of Monastir, Taher Haddad St, Monastir, 5000, Tunisia
| | - Moez Gribaa
- Department of genetics, Farhat Hached University Hospital, Ibn El Jazzar St, Sousse, 4000, Tunisia
- Laboratory of cytogenetics, molecular genetics and reproductive biology (LR03SP02), Farhat Hached University Hospital, Ibn El Jazzar St, Sousse, 4000, Tunisia
- Faculty of Medicine of Sousse, Mohamed Qaroui St, Sousse, 4002, Tunisia
| | - Ali Saad
- Department of genetics, Farhat Hached University Hospital, Ibn El Jazzar St, Sousse, 4000, Tunisia
- Laboratory of cytogenetics, molecular genetics and reproductive biology (LR03SP02), Farhat Hached University Hospital, Ibn El Jazzar St, Sousse, 4000, Tunisia
- Faculty of Medicine of Sousse, Mohamed Qaroui St, Sousse, 4002, Tunisia
| | - Dorra H'mida
- Department of genetics, Farhat Hached University Hospital, Ibn El Jazzar St, Sousse, 4000, Tunisia.
- Laboratory of cytogenetics, molecular genetics and reproductive biology (LR03SP02), Farhat Hached University Hospital, Ibn El Jazzar St, Sousse, 4000, Tunisia.
- Faculty of Medicine of Sousse, Mohamed Qaroui St, Sousse, 4002, Tunisia.
| |
Collapse
|
2
|
Al Saati A, Vande Perre P, Plenecassagnes J, Gilhodes J, Monselet N, Cabarrou B, Lignon N, Filleron T, Telly D, Perello-Lestrade E, Feillel V, Staub A, Martinez M, Chipoulet E, Collet G, Thomas F, Gladieff L, Toulas C. Multigene Panel Sequencing Identifies a Novel Germline Mutation Profile in Male Breast Cancer Patients. Int J Mol Sci 2023; 24:14348. [PMID: 37762649 PMCID: PMC10531866 DOI: 10.3390/ijms241814348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Even though male breast cancer (MBC) risk encompasses both genetic and environmental aetiologies, the primary risk factor is a germline pathogenic variant (PV) or likely pathogenic variant (LPV) in BRCA2, BRCA1 and/or PALB2 genes. To identify new potential MBC-specific predisposition genes, we sequenced a panel of 585 carcinogenesis genes in an MBC cohort without BRCA1/BRCA2/PALB2 PV/LPV. We identified 14 genes carrying rare PVs/LPVs in the MBC population versus noncancer non-Finnish European men, predominantly coding for DNA repair and maintenance of genomic stability proteins. We identified for the first time PVs/LPVs in PRCC (pre-mRNA processing), HOXA9 (transcription regulation), RECQL4 and WRN (maintenance of genomic stability) as well as in genes involved in other cellular processes. To study the specificity of this MBC PV/LPV profile, we examined whether variants in the same genes could be detected in a female breast cancer (FBC) cohort without BRCA1/BRCA2/PALB2 PV/LPV. Only 5/109 women (4.6%) carried a PV/LPV versus 18/85 men (21.2%) on these genes. FBC did not carry any PV/LPV on 11 of these genes. Although 5.9% of the MBC cohort carried PVs/LPVs in PALLD and ERCC2, neither of these genes were altered in our FBC cohort. Our data suggest that in addition to BRCA1/BRCA2/PALB2, other genes involved in DNA repair/maintenance or genomic stability as well as cell adhesion may form a specific MBC PV/LPV signature.
Collapse
Affiliation(s)
- Ayman Al Saati
- Oncogenetics Laboratory, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France; (A.A.S.); (D.T.); (E.P.-L.)
- DIAD, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France;
- Université de Toulouse, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Pierre Vande Perre
- Oncogenetics Laboratory, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France; (A.A.S.); (D.T.); (E.P.-L.)
- DIAD, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France;
| | - Julien Plenecassagnes
- Bioinformatics Department, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France;
| | - Julia Gilhodes
- Biostatistics Department, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France; (J.G.); (N.M.); (B.C.); (T.F.)
| | - Nils Monselet
- Biostatistics Department, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France; (J.G.); (N.M.); (B.C.); (T.F.)
| | - Bastien Cabarrou
- Biostatistics Department, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France; (J.G.); (N.M.); (B.C.); (T.F.)
| | - Norbert Lignon
- Oncogenetics Department, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France; (N.L.); (V.F.); (A.S.); (E.C.); (G.C.); (L.G.)
| | - Thomas Filleron
- Biostatistics Department, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France; (J.G.); (N.M.); (B.C.); (T.F.)
| | - Dominique Telly
- Oncogenetics Laboratory, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France; (A.A.S.); (D.T.); (E.P.-L.)
| | - Emilie Perello-Lestrade
- Oncogenetics Laboratory, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France; (A.A.S.); (D.T.); (E.P.-L.)
| | - Viviane Feillel
- Oncogenetics Department, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France; (N.L.); (V.F.); (A.S.); (E.C.); (G.C.); (L.G.)
| | - Anne Staub
- Oncogenetics Department, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France; (N.L.); (V.F.); (A.S.); (E.C.); (G.C.); (L.G.)
| | | | - Edith Chipoulet
- Oncogenetics Department, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France; (N.L.); (V.F.); (A.S.); (E.C.); (G.C.); (L.G.)
| | - Gaëlle Collet
- Oncogenetics Department, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France; (N.L.); (V.F.); (A.S.); (E.C.); (G.C.); (L.G.)
| | - Fabienne Thomas
- DIAD, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France;
- Université de Toulouse, Université Toulouse III-Paul Sabatier, Toulouse, France
- Pharmacology Department, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Laurence Gladieff
- Oncogenetics Department, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France; (N.L.); (V.F.); (A.S.); (E.C.); (G.C.); (L.G.)
| | - Christine Toulas
- Oncogenetics Laboratory, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France; (A.A.S.); (D.T.); (E.P.-L.)
- DIAD, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France;
| |
Collapse
|
3
|
Ben Kridis W, Lajnef M, Bouattour F, Toumi N, Daoud J, Khanfir A. Prognostic factors of male breast cancer: A monocentric experience. Breast Dis 2023; 42:271-275. [PMID: 37638418 DOI: 10.3233/bd-220073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
BACKGROUND Male breast cancer (MBC) is a rare malignancy presenting only 1% of all breast cancer. The purpose of this study was to analyze clinical and pathological prognostic factors of MBC. METHODS This is a retrospective study including 32 men diagnosed and treated for a primary breast cancer at the department of medical oncology in Sfax between 2005 and 2020. RESULTS The incidence of MBC was 1.3%. The median age of our patients was 55 years (range: 29-85 years). The average tumor size of 3.9 cm. Lymph nodes involvement was present in 18 cases (56.2%) with capsular rupture in 52% cases. Tumor was grade II in 71.8 % of cases. The expression of hormonal receptors was founded in 100% of cases. Two patients had an overexpression of HER2 (6.2%). There was no case of triple negative MBC. The OS at 5 and 10 years was 67.8% and 30.8% respectively. Prognostic factors were T4 (p = 0.015), involved nodes (p = 0.035), M+ (p = 0.01), SBR III (p = 0.0001) and HER2+++ (p = 0.001). CONCLUSION Contrary to breast cancer in women, our study showed that Tunisian MBC have positive hormone receptors in all cases. Although the overexpression of HER2 was low (8.33%) and there was no case of triple negative MBC, the prognosis was poor because of T4 stage, involved nodes, SBR III and distant metastases.
Collapse
Affiliation(s)
- Wala Ben Kridis
- Department of Medical Oncology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Mayssa Lajnef
- Department of Medical Oncology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Faida Bouattour
- Department of Medical Oncology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Nabil Toumi
- Department of Medical Oncology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Jamel Daoud
- Department of Radiotherapy, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Afef Khanfir
- Department of Medical Oncology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| |
Collapse
|
4
|
Wyrwoll MJ, van Walree ES, Hamer G, Rotte N, Motazacker MM, Meijers-Heijboer H, Alders M, Meißner A, Kaminsky E, Wöste M, Krallmann C, Kliesch S, Hunt TJ, Clark AT, Silber S, Stallmeyer B, Friedrich C, van Pelt AMM, Mathijssen IB, Tüttelmann F. Bi-allelic variants in DNA mismatch repair proteins MutS Homolog MSH4 and MSH5 cause infertility in both sexes. Hum Reprod 2021; 37:178-189. [PMID: 34755185 DOI: 10.1093/humrep/deab230] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Do bi-allelic variants in the genes encoding the MSH4/MSH5 heterodimer cause male infertility? SUMMARY ANSWER We detected biallelic, (likely) pathogenic variants in MSH5 (4 men) and MSH4 (3 men) in six azoospermic men, demonstrating that genetic variants in these genes are a relevant cause of male infertility. WHAT IS KNOWN ALREADY MSH4 and MSH5 form a heterodimer, which is required for prophase of meiosis I. One variant in MSH5 and two variants in MSH4 have been described as causal for premature ovarian insufficiency (POI) in a total of five women, resulting in infertility. Recently, pathogenic variants in MSH4 have been reported in infertile men. So far, no pathogenic variants in MSH5 had been described in males. STUDY DESIGN, SIZE, DURATION We utilized exome data from 1305 men included in the Male Reproductive Genomics (MERGE) study, including 90 males with meiotic arrest (MeiA). Independently, exome sequencing was performed in a man with MeiA from a large consanguineous family. PARTICIPANTS/MATERIALS, SETTING, METHODS Assuming an autosomal-recessive mode of inheritance, we screened the exome data for rare, biallelic coding variants in MSH4 and MSH5. If possible, segregation analysis in the patients' families was performed. The functional consequences of identified loss-of-function (LoF) variants in MSH5 were studied using heterologous expression of the MSH5 protein in HEK293T cells. The point of arrest during meiosis was determined by γH2AX staining. MAIN RESULTS AND THE ROLE OF CHANCE We report for the first time (likely) pathogenic, homozygous variants in MSH5 causing infertility in 2 out of 90 men with MeiA and overall in 4 out of 902 azoospermic men. Additionally, we detected biallelic variants in MSH4 in two men with MeiA and in the sister of one proband with POI. γH2AX staining revealed an arrest in early prophase of meiosis I in individuals with pathogenic MSH4 or MSH5 variants. Heterologous in vitro expression of the detected LoF variants in MSH5 showed that the variant p.(Ala620GlnTer9) resulted in MSH5 protein truncation and the variant p.(Ser26GlnfsTer42) resulted in a complete loss of MSH5. LARGE SCALE DATA All variants have been submitted to ClinVar (SCV001468891-SCV001468896 and SCV001591030) and can also be accessed in the Male Fertility Gene Atlas (MFGA). LIMITATIONS, REASONS FOR CAUTION By selecting for variants in MSH4 and MSH5, we were able to determine the cause of infertility in six men and one woman, leaving most of the examined individuals without a causal diagnosis. WIDER IMPLICATIONS OF THE FINDINGS Our findings have diagnostic value by increasing the number of genes associated with non-obstructive azoospermia with high clinical validity. The analysis of such genes has prognostic consequences for assessing whether men with azoospermia would benefit from a testicular biopsy. We also provide further evidence that MeiA in men and POI in women share the same genetic causes. STUDY FUNDING/COMPETING INTEREST(S) This study was carried out within the frame of the German Research Foundation sponsored Clinical Research Unit 'Male Germ Cells: from Genes to Function' (DFG, CRU326), and supported by institutional funding of the Research Institute Amsterdam Reproduction and Development and funds from the LucaBella Foundation. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- M J Wyrwoll
- Institute of Reproductive Genetics, University of Münster, Münster, Germany.,Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - E S van Walree
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - G Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Research Institute Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - N Rotte
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - M M Motazacker
- Laboratory of Genome Diagnostics, Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H Meijers-Heijboer
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M Alders
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A Meißner
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - E Kaminsky
- Praxis für Humangenetik, Hamburg, Germany
| | - M Wöste
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - C Krallmann
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - S Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - T J Hunt
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, USA
| | - A T Clark
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, USA
| | - S Silber
- Infertility Center of St Louis, St Luke's Hospital, St Louis, MO, USA
| | - B Stallmeyer
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - C Friedrich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - A M M van Pelt
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Research Institute Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - I B Mathijssen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - F Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| |
Collapse
|
5
|
Hamdi Y, Mighri N, Boujemaa M, Mejri N, Ben Nasr S, Ben Rekaya M, Messaoud O, Bouaziz H, Berrazega Y, Rachdi H, Jaidane O, Daoud N, Zribi A, Ayari J, El Benna H, Labidi S, Ben Hassouna J, Haddaoui A, Rahal K, Benna F, Mrad R, Ben Ahmed S, Boussen H, Boubaker S, Abdelhak S. Identification of Eleven Novel BRCA Mutations in Tunisia: Impact on the Clinical Management of BRCA Related Cancers. Front Oncol 2021; 11:674965. [PMID: 34490083 PMCID: PMC8417726 DOI: 10.3389/fonc.2021.674965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
Background Breast cancer is the world's most common cancer among women. It is becoming an increasingly urgent problem in low- and middle-income countries (LMICs) where a large fraction of women is diagnosed with advanced-stage disease and have no access to treatment or basic palliative care. About 5-10% of all breast cancers can be attributed to hereditary genetic components and up to 25% of familial cases are due to mutations in BRCA1/2 genes. Since their discovery in 1994 and 1995, as few as 18 mutations have been identified in BRCA genes in the Tunisian population. The aim of this study is to identify additional BRCA mutations, to estimate their contribution to the hereditary breast and ovarian cancers in Tunisia and to investigate the clinicopathological signatures associated with BRCA mutations. Methods A total of 354 patients diagnosed with breast and ovarian cancers, including 5 male breast cancer cases, have been investigated for BRCA1/2 mutations using traditional and/or next generation sequencing technologies. Clinicopathological signatures associated with BRCA mutations have also been investigated. Results In the current study, 16 distinct mutations were detected: 10 in BRCA1 and 6 in BRCA2, of which 11 are described for the first time in Tunisia including 3 variations that have not been reported previously in public databases namely BRCA1_c.915T>A; BRCA2_c.-227-?_7805+? and BRCA2_c.249delG. Early age at onset, family history of ovarian cancer and high tumor grade were significantly associated with BRCA status. BRCA1 carriers were more likely to be triple negative breast cancer compared to BRCA2 carriers. A relatively high frequency of contralateral breast cancer and ovarian cancer occurrence was observed among BRCA carriers and was more frequent in patients carrying BRCA1 mutations. Conclusion Our study provides new insights into breast and ovarian cancer genetic landscape in the under-represented North African populations. The prevalence assessment of novel and recurrent BRCA1/2 pathogenic mutations will enhance the use of personalized treatment and precise screening strategies by both affected and unaffected North African cancer cases.
Collapse
Affiliation(s)
- Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Najah Mighri
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nesrine Mejri
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Sonia Ben Nasr
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Department of Medical Oncology, Military Hospital of Tunis, Tunis, Tunisia
| | - Mariem Ben Rekaya
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,UR17ES15, Oncotheranostic Biomarkers, Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Olfa Messaoud
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hanen Bouaziz
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Yosra Berrazega
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Haifa Rachdi
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Olfa Jaidane
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Nouha Daoud
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Aref Zribi
- Department of Medical Oncology, Military Hospital of Tunis, Tunis, Tunisia
| | - Jihene Ayari
- Department of Medical Oncology, Military Hospital of Tunis, Tunis, Tunisia
| | - Houda El Benna
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Soumaya Labidi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Jamel Ben Hassouna
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | | | - Khaled Rahal
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Farouk Benna
- Department of Radiation Oncology, University of Tunis, Tunis, Tunisia
| | - Ridha Mrad
- Department of Human Genetics, Charles Nicolle Hospital, Tunis, Tunisia
| | - Slim Ben Ahmed
- Faculty of Medicine of Sousse Department of Medical Oncology Farhat Hached University Hospital University of Sousse, Sousse, Tunisia
| | - Hamouda Boussen
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|