1
|
Sabeel Z, Wang J, Dong J, Liu Y, Yu C, Yang Z. The duality of GSK-3β in urinary bladder cancer: Tumor suppressor and promoter roles through multiple signaling pathways. Biochim Biophys Acta Rev Cancer 2025; 1880:189324. [PMID: 40258445 DOI: 10.1016/j.bbcan.2025.189324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/23/2025]
Abstract
Urinary bladder cancer (UBC), the tenth most common cancer globally, is primarily categorized into non-muscle-invasive (NMIBC) and muscle-invasive (MIBC) types. NMIBC has a low risk of metastasis but tends to recur frequently after transurethral resection, whereas MIBC is associated with a higher likelihood of metastasis and poorer prognosis. At diagnosis, roughly 75 % of UBC patients have NMIBC, while the remaining 25 % present with tumor invasion into the bladder's muscle layer. The molecular complexity of UBC has driven research toward identifying subtypes for more personalized treatment approaches. Glycogen synthase kinase-3β (GSK-3β) has emerged as a pivotal regulator in UBC through its dual roles across six key pathways: (1) Wnt/β-catenin regulation (tumor suppression vs oncogenic activation), (2) ER stress responses (apoptosis induction vs cytoprotection), (3) Akt/GSK-3β/β-catenin/c-Myc signaling, (4) PI3K/Akt/mTOR interactions, (5) NF-κB-mediated immune modulation, and (6) Snail1/β-catenin-driven epithelial mesenchymal transition (EMT). Our analysis reveals that GSK-3β's context-dependent functions create both therapeutic opportunities and challenges - while inhibition suppresses tumor growth via β-catenin degradation, it may simultaneously activate NF-κB-mediated oncogenic processes. These paradoxical effects are particularly evident in the tumor microenvironment, where GSK-3β modulation differentially regulates CD8+ T cell function and macrophage polarization. Understanding these complex pathway interactions is crucial for developing precision therapies that exploit GSK-3β's tumor-suppressive roles while mitigating its oncogenic potential.
Collapse
Affiliation(s)
- Zufa Sabeel
- College of Life Science and Technology, State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Jianfeng Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Jian Dong
- College of Life Science and Technology, State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Yan Liu
- College of Life Science and Technology, State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China.
| | - Zhao Yang
- College of Life Science and Technology, State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
2
|
Ebrahimnezhad M, Natami M, Bakhtiari GH, Tabnak P, Ebrahimnezhad N, Yousefi B, Majidinia M. FOXO1, a tiny protein with intricate interactions: Promising therapeutic candidate in lung cancer. Biomed Pharmacother 2023; 169:115900. [PMID: 37981461 DOI: 10.1016/j.biopha.2023.115900] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
Nowadays, lung cancer is the most common cause of cancer-related deaths in both men and women globally. Despite the development of extremely efficient targeted agents, lung cancer progression and drug resistance remain serious clinical issues. Increasing knowledge of the molecular mechanisms underlying progression and drug resistance will enable the development of novel therapeutic methods. It has been revealed that transcription factors (TF) dysregulation, which results in considerable expression modifications of genes, is a generally prevalent phenomenon regarding human malignancies. The forkhead box O1 (FOXO1), a member of the forkhead transcription factor family with crucial roles in cell fate decisions, is suggested to play a pivotal role as a tumor suppressor in a variety of malignancies, especially in lung cancer. FOXO1 is involved in diverse cellular processes and also has clinical significance consisting of cell cycle arrest, apoptosis, DNA repair, oxidative stress, cancer prevention, treatment, and chemo/radioresistance. Based on the critical role of FOXO1, this transcription factor appears to be an appropriate target for future drug discovery in lung cancers. This review focused on the signaling pathways, and molecular mechanisms involved in FOXO1 regulation in lung cancer. We also discuss pharmacological compounds that are currently being administered for lung cancer treatment by affecting FOXO1 and also point out the essential role of FOXO1 in drug resistance. Future preclinical research should assess combination drug strategies to stimulate FOXO1 and its upstream regulators as potential strategies to treat resistant or advanced lung cancers.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Natami
- Department of Urology,Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Peyman Tabnak
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Ebrahimnezhad
- Department of Microbiology, Faculty of Basic Science, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Zhu Y, Chen Y, Xie D, Xia D, Kuang H, Guo X, Ning B. Macrophages depletion alleviates lung injury by modulating AKT3/GXP4 following ventilator associated pneumonia. Front Immunol 2023; 14:1260584. [PMID: 37731502 PMCID: PMC10507695 DOI: 10.3389/fimmu.2023.1260584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
Background AKT3 appears to play a role in lung cancer. However, its role in ventilator-associated pneumonia is still unclear. Therefore, this study aimed to investigate the role of AKT3 in macrophages during ventilator-associated pneumonia. Methods The mRNA level of AKT3, Data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), The data is analyzed using the Xiantao academic analysis tool. Additionally, the roles of AKT3 in ventilator-associated pneumonia (VAP) were investigated through in vivo experiments. Results AKT3 was differentially expressed in various normal and tumor tissues. Functional enrichment analysis indicated the immunomodulatory function and inflammatory response of AKT3 in lung cancer. Depletion of macrophages protected against lung epithelial cells and significantly decreased MMP9, MMP19, FTH, and FTL expression levels and increased GPX4 expression levels, while partially reversing the changes in macrophage. Mechanistically, macrophage depletion attenuates ferroptosis of lung epithelial cells by modulating AKT3 following VAP. Conclusion Collectively, this study suggests the need for further validation of the immunoregulatory function of AKT3 in lung cancer. Additionally, macrophage depletion mitigates lung injury by modulating the AKT3/GPX4 pathway in the context of VAP.
Collapse
Affiliation(s)
- Youfeng Zhu
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yang Chen
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Di Xie
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Xia
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Huanming Kuang
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xinmin Guo
- Department of Ultrasonography, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Bo Ning
- Department of Neurosurgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Guo Z, Zhao Y, Wu Y, Zhang Y, Wang R, Liu W, Zhang C, Yang X. Cellular retinol-binding protein 1: a therapeutic and diagnostic tumor marker. Mol Biol Rep 2023; 50:1885-1894. [PMID: 36515825 DOI: 10.1007/s11033-022-08179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
Cellular Retinol Binding Protein 1 (CRBP1) gene is a protein coding gene located on human chromosome 3q21, which codifies a protein named CRBP1. CRBP1 is widely expressed in many tissues as a chaperone protein to regulate the uptake, subsequent esterification and bioavailability of retinol. CRBP1 combines retinol and retinaldehyde with high affinity to protect retinoids from non-specific oxidation, and transports retinoids to specific enzymes to promote the biosynthesis of retinoic acid. The vital role of CRBP1 in retinoids metabolism has been gradually discovered, which has been implicated in tumorigenesis. However, the precise functions of CRBP1 in different diseases are still poorly understood. The purpose of this review is to provide an overview of the role of CRBP1 in various diseases, especially in both the promotion and inhibition of cancers, which may also offer a novel biomarker and potential therapeutic target for human diseases.
Collapse
Affiliation(s)
- Zhiyuan Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Yinshen Zhao
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Yuqi Wu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Yuqi Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Ruoyan Wang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Wan Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Chaoyang Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Xianguang Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China.
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
5
|
Chen H, Yang R, Yu X, Jiang X, Jiang L, Zhang G, Zhou X. Establishment of a Preoperative Laboratory Panel to identify Lymph Node Metastasis in Superficial Esophageal Cancer. J Cancer 2022; 13:2238-2245. [PMID: 35517400 PMCID: PMC9066211 DOI: 10.7150/jca.71114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/21/2022] [Indexed: 11/05/2022] Open
Abstract
Background and Aims: In superficial esophageal squamous cell carcinoma (SESCC), the lymph node status is considered as one of the essential factors to determine the primary treatment strategy. Nevertheless, current noninvasive staging methods before surgical intervention have limited accuracy. This study aimed to establish a simple and noninvasive serum-testing panel that facilitates the preoperative prediction of pathological nodal status in SESCC patients. Methods: Data for preoperative hematological parameters were retrospectively collected from 256 SESCC patients who underwent esophagectomy from December 2017 to May 2020. The random forest classification and decision tree algorithms were applied to identify the optimal combination of serum parameters for accurately identifying positive nodal metastasis. Results: Twelve candidate parameters were identified for statistical significance in predicting positive nodal metastasis. A multi-analyte panel was established by using a random forest classification method, incorporating four optimal parameters: Hematocrit (HCT), Activated Partial Thromboplastin Time (APTT), Retinol-Binding Proteins (RBP), and Mean Platelet Volume (MPV). A schematic decision tree was yielded from the above panel with an 89.1% accuracy of classification capability. Conclusions: This study established a simple laboratory panel in discerning the preoperative lymph nodal status of SESCC patients. With further validation, this panel may serve as a simple tool for clinicians to choose appropriate intervention (surgery versus endoscopic resection) for SESCC patients.
Collapse
Affiliation(s)
- Han Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,The First Clinical Medical College of Nanjing Medical University, Nanjing 210029, China
| | - Ruoyun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,The First Clinical Medical College of Nanjing Medical University, Nanjing 210029, China
| | - Xin Yu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,The First Clinical Medical College of Nanjing Medical University, Nanjing 210029, China
| | - Xingzhou Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,The First Clinical Medical College of Nanjing Medical University, Nanjing 210029, China
| | - Liuqin Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,The First Clinical Medical College of Nanjing Medical University, Nanjing 210029, China
| | - Guoxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,The First Clinical Medical College of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoying Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,The First Clinical Medical College of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|