1
|
Bewick P, Forstner P, Zhang B, Collakova E. Identification of novel candidate genes for regulating oil composition in soybean seeds under environmental stresses. FRONTIERS IN PLANT SCIENCE 2025; 16:1572319. [PMID: 40313727 PMCID: PMC12044429 DOI: 10.3389/fpls.2025.1572319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/26/2025] [Indexed: 05/03/2025]
Abstract
Introduction A key objective of soybean breeding programs is to enhance nutritional quality for human and animal consumption, with improved fatty acid (FA) composition for health benefits, and expand soybean use for industrial applications. Methods We conducted a metabolite genome-wide association study (mGWAS) to identify genomic regions associated with changes in FA composition and FA ratios in soybean seeds influenced by environmental factors. This mGWAS utilized 218 soybean plant introductions (PIs) grown in two field locations in Virginia over two years. Results The mGWAS revealed that 20 SNPs were significantly associated with 21 FA ratios, while additional suggestive SNPs were found for 36 FA ratios, highlighting potential quantitative trait loci linked to FA composition. Discussion Many of these SNPs are located near or within the genes related to phytohormone-mediated biotic and abiotic stress responses, suggesting the involvement of environmental factors in modulating FA composition in soybean seeds. Our findings provide novel insights into the genetic and environmental factors influencing FA composition in oilseeds. This research also lays the foundation for developing stable markers to develop soybean cultivars with tailored FA profiles for different practical applications under variable growth conditions.
Collapse
Affiliation(s)
- Patrick Bewick
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Peter Forstner
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Eva Collakova
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
2
|
Lou Q, Wang P, Yu M, Xie Z, Xu C, Chen S, Yu H, Zhang R, Tian G, Hao D, Ke X, Yu S, Zhou J, Zhao Y, Ye C, Guo J, Zhang H, Chen M, Liu X. Transcriptome Analysis Reveals the Pivotal Genes and Regulation Pathways Under Cold Stress and Identifies SbERF027, an AP2/ERF Gene That Confers Cold Tolerance in Sorghum. PLANTS (BASEL, SWITZERLAND) 2025; 14:879. [PMID: 40265816 PMCID: PMC11944419 DOI: 10.3390/plants14060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/15/2025] [Accepted: 02/28/2025] [Indexed: 04/24/2025]
Abstract
Low temperature at the seedling stage adversely affects sorghum growth and development and limits its geographical distribution. APETALA2/Ethylene-Responsive transcription factors (AP2/ERFs), one of the largest transcription factor families in plants, play essential roles in growth, development, and responses to abiotic stresses. However, the roles of AP2/ERF genes in cold tolerance in sorghum and the mechanisms underlying their effects remain largely unknown. Here, transcriptome sequencing (RNA-seq) was performed on the leaves of sorghum seedlings before and after cold treatment. Several candidate genes for cold tolerance and regulation pathways involved in "photosynthesis" under cold stress were identified via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Additionally, the AP2/ERF family gene SbERF027, a novel regulator of cold tolerance, was functionally identified through a comprehensive analysis. The expression of SbERF027 was high in seedlings and panicles, and its expression was induced by low temperature; the cold-induced expression level of SbERF027 was markedly higher in cold-tolerant accession SZ7 than in cold-sensitive accession Z-5. SbERF027 was detected in the nucleus under both normal and cold stress conditions. In addition, the cold tolerance of SbERF027-overexpressing lines was higher than that of wild-type plants; while the cold tolerance of lines with SbERF027 silenced via virus-induced gene silencing (VIGS) was significantly lower than that of wild-type plants. Further research demonstrated that SNP-911 of the promoter was essential for enhancing cold tolerance by mediating SbERF027 expression. This study lays a theoretical foundation for dissecting the mechanism of cold tolerance in sorghum and has implications for the breeding and genetic improvement of cold-tolerant sorghum.
Collapse
Affiliation(s)
- Qijin Lou
- Department of Resources and Environment, Moutai Institute, Renhuai 564502, China
| | - Peifeng Wang
- Department of Resources and Environment, Moutai Institute, Renhuai 564502, China
| | - Miao Yu
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Zhigan Xie
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding/State Key Laboratory for Conservation and Utillzation of Subtropical Agro-Bioresources, Nanning 530007, China
| | - Chen Xu
- Department of Resources and Environment, Moutai Institute, Renhuai 564502, China
| | - Shengyu Chen
- Department of Resources and Environment, Moutai Institute, Renhuai 564502, China
| | - Hao Yu
- Department of Resources and Environment, Moutai Institute, Renhuai 564502, China
| | - Rui Zhang
- Department of Resources and Environment, Moutai Institute, Renhuai 564502, China
| | - Guangling Tian
- Department of Resources and Environment, Moutai Institute, Renhuai 564502, China
| | - Di Hao
- Department of Resources and Environment, Moutai Institute, Renhuai 564502, China
| | - Xianshi Ke
- Department of Resources and Environment, Moutai Institute, Renhuai 564502, China
| | - Shuai Yu
- Department of Resources and Environment, Moutai Institute, Renhuai 564502, China
| | - Jiajia Zhou
- Department of Resources and Environment, Moutai Institute, Renhuai 564502, China
| | - Yao Zhao
- Department of Resources and Environment, Moutai Institute, Renhuai 564502, China
| | - Chao Ye
- Department of Resources and Environment, Moutai Institute, Renhuai 564502, China
| | - Jiyuan Guo
- Department of Resources and Environment, Moutai Institute, Renhuai 564502, China
| | - Haiyan Zhang
- Department of Resources and Environment, Moutai Institute, Renhuai 564502, China
| | - Mo Chen
- Department of Resources and Environment, Moutai Institute, Renhuai 564502, China
| | - Xingbei Liu
- Department of Resources and Environment, Moutai Institute, Renhuai 564502, China
| |
Collapse
|
3
|
Wang H, Charagh S, Dong N, Lu F, Wang Y, Cao R, Ma L, Wang S, Jiao G, Xie L, Shao G, Sheng Z, Hu S, Zhao F, Tang S, Chen L, Hu P, Wei X. Genome-Wide Analysis of Heat Shock Protein Family and Identification of Their Functions in Rice Quality and Yield. Int J Mol Sci 2024; 25:11931. [PMID: 39596001 PMCID: PMC11593806 DOI: 10.3390/ijms252211931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Heat shock proteins (Hsps), acting as molecular chaperones, play a pivotal role in plant responses to environmental stress. In this study, we found a total of 192 genes encoding Hsps, which are distributed across all 12 chromosomes, with higher concentrations on chromosomes 1, 2, 3, and 5. These Hsps can be divided into six subfamilies (sHsp, Hsp40, Hsp60, Hsp70, Hsp90, and Hsp100) based on molecular weight and homology. Expression pattern data indicated that these Hsp genes can be categorized into three groups: generally high expression in almost all tissues, high tissue-specific expression, and low expression in all tissues. Further analysis of 15 representative genes found that the expression of 14 Hsp genes was upregulated by high temperatures. Subcellular localization analysis revealed seven proteins localized to the endoplasmic reticulum, while others localized to the mitochondria, chloroplasts, and nucleus. We successfully obtained the knockout mutants of above 15 Hsps by the CRISPR/Cas9 gene editing system. Under natural high-temperature conditions, the mutants of eight Hsps showed reduced yield mainly due to the seed setting rate or grain weight. Moreover, the rice quality of most of these mutants also changed, including increased grain chalkiness, decreased amylose content, and elevated total protein content, and the expressions of starch metabolism-related genes in the endosperm of these mutants were disturbed compared to the wild type under natural high-temperature conditions. In conclusion, our study provided new insights into the HSP gene family and found that it plays an important role in the formation of rice quality and yield.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China; (H.W.); (S.C.); (N.D.); (F.L.); (Y.W.); (R.C.); (L.M.); (S.W.); (G.J.); (L.X.); (G.S.); (Z.S.); (S.H.); (F.Z.); (S.T.); (L.C.)
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China; (H.W.); (S.C.); (N.D.); (F.L.); (Y.W.); (R.C.); (L.M.); (S.W.); (G.J.); (L.X.); (G.S.); (Z.S.); (S.H.); (F.Z.); (S.T.); (L.C.)
| |
Collapse
|
4
|
Li G, Chen Z, Guo X, Tian D, Li C, Lin M, Hu C, Yan J. Genome-Wide Identification and Analysis of Maize DnaJ Family Genes in Response to Salt, Heat, and Cold at the Seedling Stage. PLANTS (BASEL, SWITZERLAND) 2024; 13:2488. [PMID: 39273972 PMCID: PMC11396969 DOI: 10.3390/plants13172488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
DnaJ proteins, also known as HSP40s, play a key role in plant growth and development, and response to environmental stress. However, little comprehensive research has been conducted on the DnaJ gene family in maize. Here, we identify 91 ZmDnaJ genes from maize, which are likely distributed in the chloroplast, nucleus, and cytoplasm. Our analysis revealed that ZmDnaJs were classified into three types, with conserved protein motifs and gene structures within the same type, particularly among members of the same subfamily. Gene duplication events have likely contributed to the expansion of the ZmDnaJ family in maize. Analysis of cis-regulatory elements in ZmDnaJ promoters suggested involvement in stress responses, growth and development, and phytohormone sensitivity in maize. Specifically, four cis-acting regulatory elements associated with stress responses and phytohormone regulation indicated a role in adaptation. RNA-seq analysis showed constitutive expression of most ZmDnaJ genes, some specifically in pollen and endosperm. More importantly, certain genes also responded to salt, heat, and cold stresses, indicating potential interaction between stress regulatory networks. Furthermore, early responses to heat stress varied among five inbred lines, with upregulation of almost tested ZmDnaJ genes in B73 and B104 after 6 h, and fewer genes upregulated in QB1314, MD108, and Zheng58. After 72 h, most ZmDnaJ genes in the heat-sensitive inbred lines (B73 and B104) returned to normal levels, while many genes, including ZmDnaJ55, 79, 88, 90, and 91, remained upregulated in the heat-tolerant inbred lines (QB1314, MD108, and Zheng58) suggesting a synergistic function for prolonged protection against heat stress. In conclusion, our study provides a comprehensive analysis of the ZmDnaJ family in maize and demonstrates a correlation between heat stress tolerance and the regulation of gene expression within this family. These offer a theoretical basis for future functional validation of these genes.
Collapse
Affiliation(s)
- Gang Li
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Ziqiang Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Xinrui Guo
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Dagang Tian
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Chenchen Li
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Min Lin
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Changquan Hu
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Jingwan Yan
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| |
Collapse
|
5
|
Jin Y, Jia J, Yang Y, Zhu X, Yan H, Mao C, Najeeb A, Luo J, Sun M, Xie Z, Wang X, Huang L. DNAJ protein gene expansion mechanism in Panicoideae and PgDNAJ functional identification in pearl millet. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:149. [PMID: 38836874 DOI: 10.1007/s00122-024-04656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
KEY MESSAGE Analyze the evolutionary pattern of DNAJ protein genes in the Panicoideae, including pearl millet, to identify and characterize the biological function of PgDNAJ genes in pearl millet. Global warming has become a major factor threatening food security and human development. It is urgent to analyze the heat-tolerant mechanism of plants and cultivate crops that are adapted to high temperature conditions. The Panicoideae are the second largest subfamily of the Poaceae, widely distributed in warm temperate and tropical regions. Many of these species have been reported to have strong adaptability to high temperature stress, such as pearl millet, foxtail millet and sorghum. The evolutionary differences in DNAJ protein genes among 12 Panicoideae species and 10 other species were identified and analyzed. Among them, 79% of Panicoideae DNAJ protein genes were associated with retrotransposon insertion. Analysis of the DNAJ protein pan-gene family in six pearl millet accessions revealed that the non-core genes contained significantly more TEs than the core genes. By identifying and analyzing the distribution and types of TEs near the DNAJ protein genes, it was found that the insertion of Copia and Gypsy retrotransposons provided the source of expansion for the DNAJ protein genes in the Panicoideae. Based on the analysis of the evolutionary pattern of DNAJ protein genes in Panicoideae, the PgDNAJ was obtained from pearl millet through identification. PgDNAJ reduces the accumulation of reactive oxygen species caused by high temperature by activating ascorbate peroxidase (APX), thereby improving the heat resistance of plants. In summary, these data provide new ideas for mining potential heat-tolerant genes in Panicoideae, and help to improve the heat tolerance of other crops.
Collapse
Affiliation(s)
- Yarong Jin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiyuan Jia
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuchen Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin Zhu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haidong Yan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunli Mao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Atiqa Najeeb
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinchan Luo
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Sun
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zheni Xie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
6
|
Wang X, Jin Z, Ding Y, Guo M. Characterization of HSP70 family in watermelon ( Citrullus lanatus): identification, structure, evolution, and potential function in response to ABA, cold and drought stress. Front Genet 2023; 14:1201535. [PMID: 37323666 PMCID: PMC10265491 DOI: 10.3389/fgene.2023.1201535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Watermelon (Citrullus lanatus) as a crop with important economic value, is widely cultivated around the world. The heat shock protein 70 (HSP70) family in plant is indispensable under stress conditions. However, no comprehensive analysis of watermelon HSP70 family is reported to date. In this study, 12 ClHSP70 genes were identified from watermelon, which were unevenly located in 7 out of 11 chromosomes and divided into three subfamilies. ClHSP70 proteins were predicted to be localized primarily in cytoplasm, chloroplast, and endoplasmic reticulum. Two pairs of segmental repeats and 1 pair of tandem repeats existed in ClHSP70 genes, and ClHSP70s underwent strong purification selection. There were many abscisic acid (ABA) and abiotic stress response elements in ClHSP70 promoters. Additionally, the transcriptional levels of ClHSP70s in roots, stems, true leaves, and cotyledons were also analyzed. Some of ClHSP70 genes were also strongly induced by ABA. Furthermore, ClHSP70s also had different degrees of response to drought and cold stress. The above data indicate that ClHSP70s may be participated in growth and development, signal transduction and abiotic stress response, laying a foundation for further analysis of the function of ClHSP70s in biological processes.
Collapse
Affiliation(s)
- Xinsheng Wang
- School of Wine and Horticulture, Ningxia University, Yinchuan, China
| | - Zhi Jin
- School of Wine and Horticulture, Ningxia University, Yinchuan, China
| | - Yina Ding
- School of Wine and Horticulture, Ningxia University, Yinchuan, China
| | - Meng Guo
- School of Wine and Horticulture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, Ningxia, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| |
Collapse
|
7
|
Yang Y, Zhao L, Wang J, Lu N, Ma W, Ma J, Zhang Y, Fu P, Yao C, Hu J, Wang N. Genome-wide identification of DnaJ gene family in Catalpa bungei and functional analysis of CbuDnaJ49 in leaf color formation. FRONTIERS IN PLANT SCIENCE 2023; 14:1116063. [PMID: 36968394 PMCID: PMC10038198 DOI: 10.3389/fpls.2023.1116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
DnaJs are the common molecular chaperone proteins with strong structural and functional diversity. In recent years, only several DnaJ family members have been found to be able to regulate leaf color, and it remains to be explored whether there are other potential members that also regulate this character. Here, we identified 88 putative DnaJ proteins from Catalpa bungei, and classified them into four types according to their domain. Gene-structure analysis revealed that each member of CbuDnaJ family had same or similar exon-intron structure. Chromosome mapping and collinearity analysis showed that tandem and fragment duplication occurred in the process of evolution. Promoter analyses suggested that CbuDnaJs might be involved in a variety of biological processes. The expression levels of DnaJ family members in different color leaves of Maiyuanjinqiu were respectively extracted from the differential transcriptome. Among these, CbuDnaJ49 was the largest differentially expressed gene between the green and yellow sectors. Ectopic overexpression of CbuDnaJ49 in tobacco showed that the positive transgenic seedlings exhibited albino leaves, and the contents of chlorophyll and carotenoid were significantly reduced compared with those of wild type. The results suggested that CbuDnaJ49 played an important role in regulating leaf color. This study not only identified a novel gene of DnaJ family members regulating leaf color, but also provided new germplasm for landscaping.
Collapse
Affiliation(s)
- Yingying Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Beijing, China
- Biotechnology Research Center of China Three Gorges University, Yichang, China
| | - Linjiao Zhao
- Hekou Yao Autonomous County Forestry and Grassland Bureau, Hekou, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Beijing, China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Beijing, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Beijing, China
| | - Jiang Ma
- Biotechnology Research Center of China Three Gorges University, Yichang, China
| | - Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Beijing, China
| | - Pengyue Fu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chengcheng Yao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Beijing, China
| | - Jiwen Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Beijing, China
| | - Nan Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Beijing, China
| |
Collapse
|
8
|
Molecular Response of Ulva prolifera to Short-Term High Light Stress Revealed by a Multi-Omics Approach. BIOLOGY 2022; 11:biology11111563. [PMID: 36358264 PMCID: PMC9687821 DOI: 10.3390/biology11111563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022]
Abstract
The main algal species of Ulva prolifera green tide in the coastal areas of China are four species, but after reaching the coast of Qingdao, U. prolifera becomes the dominant species, where the light intensity is one of the most important influencing factors. In order to explore the effects of short-term high light stress on the internal molecular level of cells and its coping mechanism, the transcriptome, proteome, metabolome, and lipid data of U. prolifera were collected. The algae were cultivated in high light environment conditions (400 μmol·m−2·s−1) for 12 h and measured, and the data with greater relative difference (p < 0.05) were selected, then analyzed with the KEGG pathway. The results showed that the high light stress inhibited the assimilation of U. prolifera, destroyed the cell structure, and arrested its growth and development. Cells entered the emergency defense state, the TCA cycle was weakened, and the energy consumption processes such as DNA activation, RNA transcription, protein synthesis and degradation, and lipid alienation were inhibited. A gradual increase in the proportion of the C4 pathway was recorded. This study showed that U. prolifera can reduce the reactive oxygen species produced by high light stress, inhibit respiration, and reduce the generation of NADPH. At the same time, the C3 pathway began to change to the C4 pathway which consumed more energy. Moreover, this research provides the basis for the study of algae coping with high light stress.
Collapse
|
9
|
Amnan MAM, Aizat WM, Khaidizar FD, Tan BC. Drought Stress Induces Morpho-Physiological and Proteome Changes of Pandanus amaryllifolius. PLANTS (BASEL, SWITZERLAND) 2022; 11:221. [PMID: 35050109 PMCID: PMC8778612 DOI: 10.3390/plants11020221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 05/20/2023]
Abstract
Drought is one of the significant threats to the agricultural sector. However, there is limited knowledge on plant response to drought stress and post-drought recovery. Pandanus amaryllifolius, a moderate drought-tolerant plant, is well-known for its ability to survive in low-level soil moisture conditions. Understanding the molecular regulation of drought stress signaling in this plant could help guide the rational design of crop plants to counter this environmental challenge. This study aimed to determine the morpho-physiological, biochemical, and protein changes of P. amaryllifolius in response to drought stress and during recovery. Drought significantly reduced the leaf relative water content and chlorophyll content of P. amaryllifolius. In contrast, relative electrolyte leakage, proline and malondialdehyde contents, and the activities of antioxidant enzymes in the drought-treated and recovered samples were relatively higher than the well-watered sample. The protein changes between drought-stressed, well-watered, and recovered plants were evaluated using tandem mass tags (TMT)-based quantitative proteomics. Of the 1415 differentially abundant proteins, 74 were significantly altered. The majority of proteins differing between them were related to carbon metabolism, photosynthesis, stress response, and antioxidant activity. This is the first study that reports the protein changes in response to drought stress in Pandanus. The data generated provide an insight into the drought-responsive mechanisms in P. amaryllifolius.
Collapse
Affiliation(s)
- Muhammad Asyraf Mohd Amnan
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.M.A.); (F.D.K.)
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Fiqri Dizar Khaidizar
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.M.A.); (F.D.K.)
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.M.A.); (F.D.K.)
| |
Collapse
|
10
|
Genome-Wide Identification and Characterization of DnaJ Gene Family in Grape (Vitis vinifera L.). HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Grape production in southern China suffers great loss due to various environmental stresses. To understand the mechanism of how the grape plants respond to these stresses is an active area of research in developing cultivation techniques. Plant stress resistance is known to rely on special proteins. Amongst them, DnaJ protein (HSP40) serves as co-chaperones of HSP70, playing crucial roles in various stress response. However, the DnaJ proteins encoded by the DnaJ gene family in Vitis vinifera L. have not been fully described yet. In this study, we identified 78 VvDnaJs in the grape genome that can be classified into three groups—namely, DJA, DJB, and DJC. To reveal the evolutionary and stress response mechanisms for the VvDnaJ gene family, their evolutionary and expression patterns were analyzed using the bioinformatic approach and qRT-PCR. We found that the members in the same group exhibited a similar gene structure and protein domain organization. Gene duplication analysis demonstrated that segmental and tandem duplication may not be the dominant pathway of gene expansion in the VvDnaJ gene family. Codon usage pattern analysis showed that the codon usage pattern of VvDnaJs differs obviously from the monocotyledon counterparts. Tissue-specific analysis revealed that 12 VvDnaJs present a distinct expression profile, implying their distinct roles in various tissues. Cis-acting element analysis showed that almost all VvDnaJs contained the elements responsive to either hormones or stresses. Therefore, the expression levels of VvDnaJs subjected to exogenous hormone applications and stress treatments were determined, and we found that VvDnaJs were sensitive to hormone treatments and shade, salt, and heat stresses, especially VIT_00s0324g00040. The findings of this study could provide comprehensive information for the further investigation on the genetics and protein functions of the DnaJ gene family in grape.
Collapse
|
11
|
HSP70/DNAJ Family of Genes in the Brown Planthopper, Nilaparvata lugens: Diversity and Function. Genes (Basel) 2021; 12:genes12030394. [PMID: 33801945 PMCID: PMC7999391 DOI: 10.3390/genes12030394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock 70kDa proteins (HSP70s) and their cochaperones DNAJs are ubiquitous molecular chaperones, which function as the “HSP70/DNAJ machinery” in a myriad of biological processes. At present, a number of HSP70s have been classified in many species, but studies on DNAJs, especially in insects, are lacking. Here, we first systematically identified and characterized the HSP70 and DNAJ family members in the brown planthopper (BPH), Nilaparvata lugens, a destructive rice pest in Asia. A total of nine HSP70 and 31 DNAJ genes were identified in the BPH genome. Sequence and phylogenetic analyses revealed the high diversity of the NlDNAJ family. Additionally, spatio-temporal expression analysis showed that most NlHSP70 and NlDNAJ genes were highly expressed in the adult stage and gonads. Furthermore, RNA interference (RNAi) revealed that seven NlHSP70s and 10 NlDNAJs play indispensable roles in the nymphal development, oogenesis, and female fertility of N. lugens under physiological growth conditions; in addition, one HSP70 (NlHSP68) was found to be important in the thermal tolerance of eggs. Together, our results in this study shed more light on the biological roles of HSP70/DNAJ in regulating life cycle, coping with environmental stresses, and mediating the interactions within, or between, the two gene families in insects.
Collapse
|