1
|
Huang T, Chen J, Zhang L, Wang R, Liu Y, Lu C. Diagnostic performance of microRNAs for predicting response to transarterial chemoembolization in hepatocellular carcinoma: a meta-analysis. Front Oncol 2025; 14:1483196. [PMID: 39876897 PMCID: PMC11773618 DOI: 10.3389/fonc.2024.1483196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
Purpose To provide a detailed pooled analysis of the diagnostic accuracy of microRNAs (miRNAs) in predicting the response to transarterial chemoembolization (TACE) in hepatocellular carcinoma (HCC). Methods A comprehensive literature search was conducted across PubMed, Embase, Cochrane Library, and Web of Science to identify studies assessing the diagnostic performance of miRNAs in predicting TACE response in HCC. Two independent reviewers performed quality assessment and data extraction using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and the area under the summary receiver operating characteristic (SROC) curve were calculated using a bivariate random-effects model. Subgroup analyses and meta-regression were performed to explore potential sources of heterogeneity, including sample size, response criteria, specimen source, response evaluation methods, TACE efficacy interval window, and geographical location. Results Seven studies, comprising 320 HCC responders and 187 non-responders, were included in this meta-analysis. The miRNAs studied included miR-373, miR-210, miR-4492, miR-1271, miR-214, miR-133b, and miR-335. The pooled sensitivity of miRNAs in predicting recurrence after TACE was 0.79 [95% CI: 0.72-0.84], and the pooled specificity was 0.82 [95% CI: 0.74-0.88]. The DOR was 17 [95% CI: 9-33], and the pooled area under the SROC curve (AUC) was 0.85 [95% CI: 0.81-0.88], indicating excellent diagnostic accuracy. Subgroup analyses revealed significant differences in diagnostic performance based on response criteria and geographical location. Meta-regression did not identify any significant sources of interstudy heterogeneity. Conclusion MiRNAs show promise as diagnostic tools for predicting TACE response in HCC patients. However, their clinical application requires further validation in larger cohorts. Future research should focus on standardizing RNA extraction methods, selecting consistent endogenous controls, and adopting uniform response evaluation criteria to improve reliability and reduce variability.
Collapse
Affiliation(s)
- Tianyi Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Jing Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Lu Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Rui Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Yiheng Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| |
Collapse
|
2
|
Gajos-Michniewicz A, Czyz M. WNT/β-catenin signaling in hepatocellular carcinoma: The aberrant activation, pathogenic roles, and therapeutic opportunities. Genes Dis 2024; 11:727-746. [PMID: 37692481 PMCID: PMC10491942 DOI: 10.1016/j.gendis.2023.02.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/28/2022] [Accepted: 02/14/2023] [Indexed: 09/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a liver cancer, highly heterogeneous both at the histopathological and molecular levels. It arises from hepatocytes as the result of the accumulation of numerous genomic alterations in various signaling pathways, including canonical WNT/β-catenin, AKT/mTOR, MAPK pathways as well as signaling associated with telomere maintenance, p53/cell cycle regulation, epigenetic modifiers, and oxidative stress. The role of WNT/β-catenin signaling in liver homeostasis and regeneration is well established, whereas in development and progression of HCC is extensively studied. Herein, we review recent advances in our understanding of how WNT/β-catenin signaling facilitates the HCC development, acquisition of stemness features, metastasis, and resistance to treatment. We outline genetic and epigenetic alterations that lead to activated WNT/β-catenin signaling in HCC. We discuss the pivotal roles of CTNNB1 mutations, aberrantly expressed non-coding RNAs and complexity of crosstalk between WNT/β-catenin signaling and other signaling pathways as challenging or advantageous aspects of therapy development and molecular stratification of HCC patients for treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| |
Collapse
|
3
|
Mohapatra P, Chandrasekaran N. Wnt/β-catenin targeting in liver carcinoma through nanotechnology-based drug repurposing: A review. Biomed Pharmacother 2022; 155:113713. [PMID: 36126453 DOI: 10.1016/j.biopha.2022.113713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Liver cancer is the fifth most widespread in the world, with a high fatality rate and poor prognosis.However,surgicalresction,thermal/radiofrequencyablation,chemo/radioembolization and pathway targeting to the cancer cells are all possible options for treating Liver Carcinoma. Unfortunately, once the tumour has developed and spread, diagnosis often occurs too late. The targeted therapy has demonstrated notable, albeit modest, efficacy in some patients with advanced HCC. This demonstrates the necessity of creating additional focused treatments and, in pursuit of this end, the need to find ever-more pathways as prospective targets. Despite the critical need, there are currently no Wnt signalling directed therapy on the research field, only a few methods have progressed beyond the early stage of clinical studies. In the present study, we report that repurposing of drug previously licensed for other diseases is one possible strategy inhibit malignant cell proliferation and renewal by removing individuals protein expression in the Wnt/β-catenin pathway. Particularly β-catenin complex is present in Liver cancer, where tumour necrosis factor is indispensable for the complex formation and β-catenin interactions are disrupted upon drug in nano-carrier through nanotechnology. This study findings not only highlight that repurposing drug could improve liver cancer treatment outcomes but also focused to character traits and functions of the Wnt signalling cascade's molecular targets and how they could be used to get anti-tumour results method to targeting Wnt/β-catenin in liver carcinoma.
Collapse
|
4
|
Deldar Abad Paskeh M, Mirzaei S, Ashrafizadeh M, Zarrabi A, Sethi G. Wnt/β-Catenin Signaling as a Driver of Hepatocellular Carcinoma Progression: An Emphasis on Molecular Pathways. J Hepatocell Carcinoma 2021; 8:1415-1444. [PMID: 34858888 PMCID: PMC8630469 DOI: 10.2147/jhc.s336858] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Liver cancers cause a high rate of death worldwide and hepatocellular carcinoma (HCC) is considered as the most common primary liver cancer. HCC remains a challenging disease to treat. Wnt/β-catenin signaling pathway is considered a tumor-promoting factor in various cancers; hence, the present review focused on the role of Wnt signaling in HCC, and its association with progression and therapy response based on pre-clinical and clinical evidence. The nuclear translocation of β-catenin enhances expression level of genes such as c-Myc and MMPs in increasing cancer progression. The mutation of CTNNB1 gene encoding β-catenin and its overexpression can lead to HCC progression. β-catenin signaling enhances cancer stem cell features of HCC and promotes their growth rate. Furthermore, β-catenin prevents apoptosis in HCC cells and increases their migration via triggering EMT and upregulating MMP levels. It is suggested that β-catenin signaling participates in mediating drug resistance and immuno-resistance in HCC. Upstream mediators including ncRNAs can regulate β-catenin signaling in HCC. Anti-cancer agents inhibit β-catenin signaling and mediate its proteasomal degradation in HCC therapy. Furthermore, clinical studies have revealed the role of β-catenin and its gene mutation (CTNBB1) in HCC progression. Based on these subjects, future experiments can focus on developing novel therapeutics targeting Wnt/β-catenin signaling in HCC therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
5
|
Huang PS, Liao CJ, Huang YH, Yeh CT, Chen CY, Tang HC, Chang CC, Lin KH. Functional and Clinical Significance of Dysregulated microRNAs in Liver Cancer. Cancers (Basel) 2021; 13:5361. [PMID: 34771525 PMCID: PMC8582514 DOI: 10.3390/cancers13215361] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022] Open
Abstract
Liver cancer is the leading cause of cancer-related mortality in the world. This mainly reflects the lack of early diagnosis tools and effective treatment methods. MicroRNAs (miRNAs) are a class of non-transcribed RNAs, some of which play important regulatory roles in liver cancer. Here, we discuss microRNAs with key impacts on liver cancer, such as miR-122, miR-21, miR-214, and miR-199. These microRNAs participate in various physiological regulatory pathways of liver cancer cells, and their modulation can have non-negligible effects in the treatment of liver cancer. We discuss whether these microRNAs can be used for better clinical diagnosis and/or drug development. With the advent of novel technologies, fast, inexpensive, and non-invasive RNA-based biomarker research has become a new mainstream approach. However, the clinical application of microRNA-based markers has been limited by the high sequence similarity among them and the potential for off-target problems. Therefore, researchers particularly value microRNAs that are specific to or have special functions in liver cancer. These include miR-122, which is specifically expressed in the liver, and miR-34, which is necessary for the replication of the hepatitis C virus in liver cancer. Clinical treatment drugs have been developed based on miR-34 and miR-122 (MRX34 and Miravirsen, respectively), but their side effects have not yet been overcome. Future research is needed to address these weaknesses and establish a feasible microRNA-based treatment strategy for liver cancer.
Collapse
Affiliation(s)
- Po-Shuan Huang
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Chia-Jung Liao
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hui-Chi Tang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Cheng-Chih Chang
- Department of General Surgery, Chang Gung Memorial Hospital at Chia-yi, Chia-yi 613, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| |
Collapse
|
6
|
Long Noncoding RNA FENDRR Inhibits Lung Fibroblast Proliferation via a Reduction of β-Catenin. Int J Mol Sci 2021; 22:ijms22168536. [PMID: 34445242 PMCID: PMC8395204 DOI: 10.3390/ijms22168536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 02/06/2023] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and usually lethal lung disease and it has been widely accepted that fibroblast proliferation is one of the key characteristics of IPF. Long noncoding RNAs (lncRNAs) play vital roles in the pathogenesis of many diseases. In this study, we investigated the role of lncRNA FENDRR on fibroblast proliferation. Human lung fibroblasts stably overexpressing FENDRR showed a reduced cell proliferation compared to those expressing the control vector. On the other hand, FENDRR silencing increased fibroblast proliferation. FENDRR bound serine-arginine rich splicing factor 9 (SRSF9) and inhibited the phosphorylation of p70 ribosomal S6 kinase 1 (PS6K), a downstream protein of the mammalian target of rapamycin (mTOR) signaling. Silencing SRSF9 reduced fibroblast proliferation. FENDRR reduced β-catenin protein, but not mRNA levels. The reduction of β-catenin protein levels in lung fibroblasts by gene silencing or chemical inhibitor decreased fibroblast proliferation. Adenovirus-mediated FENDRR transfer to the lungs of mice reduced asbestos-induced fibrotic lesions and collagen deposition. RNA sequencing of lung tissues identified 7 cell proliferation-related genes that were up-regulated by asbestos but reversed by FENDRR. In conclusion, FENDRR inhibits fibroblast proliferation and functions as an anti-fibrotic lncRNA.
Collapse
|
7
|
Song H, Liu Y, Liang H, Jin X, Liu L. SPINT1-AS1 Drives Cervical Cancer Progression via Repressing miR-214 Biogenesis. Front Cell Dev Biol 2021; 9:691140. [PMID: 34350182 PMCID: PMC8326843 DOI: 10.3389/fcell.2021.691140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/28/2021] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidences have revealed the dysregulated expressions and critical roles of non-coding RNAs in various malignancies, including cervical cancer. Nevertheless, our knowledge about the vast majority of non-coding RNAs is still lacking. Here we identified long non-coding RNA (lncRNA) SPINT1-AS1 as a novel cervical cancer-associated lncRNA. SPINT1-AS1 was increased in cervical cancer and correlated with advanced stage and poor prognosis. SPINT1-AS1 was a direct downstream target of miR-214, a well-known tumor suppressive microRNA (miRNA) in cervical cancer. Intriguingly, SPINT1-AS1 was also found to repress miR-214 biogenesis via binding DNM3OS, the primary transcript of miR-214. The interaction between SPINT1-AS1 and DNM3OS repressed the binding of DROSHA and DGCR8 to DNM3OS, blocked DNM3OS cleavage, and therefore repressed mature miR-214 biogenesis. The expression of SPINT1-AS1 was significantly negatively correlated with miR-214 in cervical cancer tissues, supporting the reciprocal repression between SPINT1-AS1 and miR-214 in vivo. Through downregulating mature miR-214 level, SPINT1-AS1 upregulated the expression of β-catenin, a target of miR-214. Thus, SPINT1-AS1 further activated Wnt/β-catenin signaling in cervical cancer. Functionally, SPINT1-AS1 drove cervical cancer cellular proliferation, migration, and invasion in vitro, and also tumorigenesis in vivo. Deletion of the region mediating the interaction between SPINT1-AS1 and DNM3OS, overexpression of miR-214, and inhibition of Wnt/β-catenin signaling all reversed the roles of SPINT1-AS1 in cervical cancer. Collectively, these findings identified SPINT1-AS1 as a novel cervical cancer-associated oncogenic lncRNA which represses miR-214 biogenesis and activates Wnt/β-catenin signaling, highlighting its potential as prognostic biomarker and therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Hongjuan Song
- Department of Gynecology, Xuzhou Maternal and Child Health Care Hospital, Xuzhou, China.,Department of Gynecology, Xuzhou Renci Hospital, Xuzhou, China
| | - Yuan Liu
- Department of Gynecology, Xuzhou Maternal and Child Health Care Hospital, Xuzhou, China
| | - Hui Liang
- Department of Cervical Disease, Xuzhou Maternal and Child Health Care Hospital, Xuzhou, China
| | - Xin Jin
- Medical Department, Xuzhou Central Hospital, Xuzhou, China
| | - Liping Liu
- Department of Research and Development, Shanghai Lichun Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|