1
|
Elsaid S, Wu X, Tee SS. Fructose vs. glucose: modulating stem cell growth and function through sugar supplementation. FEBS Open Bio 2024; 14:1277-1290. [PMID: 38923793 PMCID: PMC11301265 DOI: 10.1002/2211-5463.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/17/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
In multicellular organisms, stem cells are impacted by microenvironmental resources such as nutrient availability and oxygen tension for their survival, growth, and differentiation. However, the accessibility of these resources in the pericellular environment greatly varies from organ to organ. This divergence in resource availability leads to variations in the potency and differentiation potential of stem cells. This study aimed to explore the distinct effects of glucose and fructose, as well as different oxygen tensions, on the growth dynamics, cytokine production, and differentiation of stem cells. We showed that replacing glucose with fructose subjected stem cells to stress, resulting in increased Hif1α expression and stability, which in turn led to a reduction in cell proliferation, and alterations in cytokine production. However, fructose failed to induce differentiation of human mesenchymal stem cells (hMSCs) as well as mouse fibroblasts into mature adipocytes compared to glucose, despite the upregulation of key markers of adipogenesis, including C/EBPβ, and PPARγ. Conversely, we showed that fructose induced undifferentiated mouse fibroblasts to release cytokines associated with senescence, including IL1α1, IL6, IL8, MCP1, and TNF1α, suggesting that these cells were undergoing lipolysis. Taken together, our results suggest that altering the culture conditions through changes in hexose levels and oxygen tension places considerable stress on stem cells. Additional research is required to further characterize the mechanisms governing stem cell response to their microenvironments.
Collapse
Affiliation(s)
- Salaheldeen Elsaid
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Xiangdong Wu
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Sui Seng Tee
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| |
Collapse
|
2
|
Jalava N, Arponen M, Widjaja N, Heino TJ, Ivaska KK. Short- and long-term exposure to high glucose induces unique transcriptional changes in osteoblasts in vitro. Biol Open 2024; 13:bio060239. [PMID: 38742438 PMCID: PMC11128269 DOI: 10.1242/bio.060239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Bone is increasingly recognized as a target for diabetic complications. In order to evaluate the direct effects of high glucose on bone, we investigated the global transcriptional changes induced by hyperglycemia in osteoblasts in vitro. Rat bone marrow-derived mesenchymal stromal cells were differentiated into osteoblasts for 10 days, and prior to analysis, they were exposed to hyperglycemia (25 mM) for the short-term (1 or 3 days) or long-term (10 days). Genes and pathways regulated by hyperglycemia were identified using mRNA sequencing and verified with qPCR. Genes upregulated by 1-day hyperglycemia were, for example, related to extracellular matrix organization, collagen synthesis and bone formation. This stimulatory effect was attenuated by 3 days. Long-term exposure impaired osteoblast viability, and downregulated, for example, extracellular matrix organization and lysosomal pathways, and increased intracellular oxidative stress. Interestingly, transcriptional changes by different exposure times were mostly unique and only 89 common genes responding to glucose were identified. In conclusion, short-term hyperglycemia had a stimulatory effect on osteoblasts and bone formation, whereas long-term hyperglycemia had a negative effect on intracellular redox balance, osteoblast viability and function.
Collapse
Affiliation(s)
- Niki Jalava
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku 20520, Finland
| | - Milja Arponen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku 20520, Finland
| | - Nicko Widjaja
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku 20520, Finland
| | - Terhi J. Heino
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku 20520, Finland
| | - Kaisa K. Ivaska
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku 20520, Finland
| |
Collapse
|
3
|
Abraham M, Kori I, Vishwakarma U, Goel S. Comprehensive assessment of goat adipose tissue-derived mesenchymal stem cells cultured in different media. Sci Rep 2024; 14:8380. [PMID: 38600175 PMCID: PMC11006890 DOI: 10.1038/s41598-024-58465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have demonstrated potential in treating livestock diseases that are unresponsive to conventional therapies. MSCs derived from goats, a valuable model for studying orthopaedic disorders in humans, offer insights into bone formation and regeneration. Adipose tissue-derived MSCs (ADSCs) are easily accessible and have a high capacity for expansion. Although the choice of culture media significantly influences the biological properties of MSCs, the optimal media for goat ADSCs (gADSCs) remains unclear. This study aimed to assess the effects of four commonly used culture media on gADSCs' culture characteristics, stem cell-specific immunophenotype, and differentiation. Results showed that MEM, DMEM/F12, and DMEM-LG were superior in maintaining cell morphology and culture parameters of gADSCs, such as cell adherence, metabolic activity, colony-forming potential, and population doubling. Conversely, DMEM-HG exhibited poor performance across all evaluated parameters. The gADSCs cultured in DMEM/F12 showed enhanced early proliferation and lower apoptosis. The cell surface marker distribution exhibited superior characteristics in gADSCs cultured in MEM and DMEM/F12. In contrast, the distribution was inferior in gADSCs cultured in DMEM-LG. DMEM/F12 and DMEM-LG culture media demonstrated a significantly higher potential for chondrogenic differentiation and DMEM-LG for osteogenic differentiation. In conclusion, DMEM/F12 is a suitable culture medium for propagating gADSCs as it effectively maintains cell morphology, growth parameters, proliferation and lower apoptosis while exhibiting desirable expression patterns of MSC-specific markers. These findings contribute to optimising culture conditions for gADSCs, enhancing their potential applications in disease treatment and regenerative medicine.
Collapse
Affiliation(s)
- Michelle Abraham
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| | - Ibraz Kori
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Utkarsha Vishwakarma
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Sandeep Goel
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India.
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India.
| |
Collapse
|
4
|
Romero-Gavilán F, García-Arnáez I, Cerqueira A, Arias-Mainer C, Azkargorta M, Elortza F, Izquierdo R, Gurruchaga M, Goñi I, Suay J. Using osteogenic medium in the in vitro evaluation of bone biomaterials: Artefacts due to a synergistic effect. Biochimie 2024; 216:24-33. [PMID: 37716498 DOI: 10.1016/j.biochi.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/01/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
In vitro tests using bone cells to evaluate the osteogenic potential of biomaterials usually employ the osteogenic medium (OM). The lack of correlation frequently reported between in vitro and in vivo studies in bone biomaterials, makes necessary the evaluation of the impact of osteogenic supplements on these results. This study analysed the proteomic profiles of human osteoblasts (HOb) cultured in the media with and without osteogenic agents (ascorbic acid and β-glycerol phosphate). The cells were incubated for 1 and 7 days, on their own or in contact with Ti. The comparative Perseus analysis identified 2544 proteins whose expression was affected by osteogenic agents. We observed that the OM strongly alters protein expression profiles with a complex impact on multiple pathways associated with adhesion, immunity, oxidative stress, coagulation, angiogenesis and osteogenesis. OM-triggered changes in the HOb intracellular energy production mechanisms, with key roles in osteoblast maturation. HOb cultured with and without Ti showed enrichment in the skeletal system development function due to the OM. However, differentially expressed proteins with key regenerative functions were associated with a synergistic effect of OM and Ti. This synergy, caused by the Ti-OM interaction, could complicate the interpretation of in vitro results, highlighting the need to analyse this phenomenon in biomaterial testing.
Collapse
Affiliation(s)
- Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain.
| | - Iñaki García-Arnáez
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Carlos Arias-Mainer
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Raúl Izquierdo
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Mariló Gurruchaga
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Isabel Goñi
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| |
Collapse
|
5
|
Luo M, Zhao Z, Yi J. Osteogenesis of bone marrow mesenchymal stem cell in hyperglycemia. Front Endocrinol (Lausanne) 2023; 14:1150068. [PMID: 37415664 PMCID: PMC10321525 DOI: 10.3389/fendo.2023.1150068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Diabetes mellitus (DM) has been shown to be a clinical risk factor for bone diseases including osteoporosis and fragility. Bone metabolism is a complicated process that requires coordinated differentiation and proliferation of bone marrow mesenchymal stem cells (BMSCs). Owing to the regenerative properties, BMSCs have laid a robust foundation for their clinical application in various diseases. However, mounting evidence indicates that the osteogenic capability of BMSCs is impaired under high glucose conditions, which is responsible for diabetic bone diseases and greatly reduces the therapeutic efficiency of BMSCs. With the rapidly increasing incidence of DM, a better understanding of the impacts of hyperglycemia on BMSCs osteogenesis and the underlying mechanisms is needed. In this review, we aim to summarize the current knowledge of the osteogenesis of BMSCs in hyperglycemia, the underlying mechanisms, and the strategies to rescue the impaired BMSCs osteogenesis.
Collapse
Affiliation(s)
- Meng Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Shahen VA, Schindeler A, Rybchyn MS, Girgis CM, Mulholland B, Mason RS, Levinger I, Brennan-Speranza TC. Rescue of High Glucose Impairment of Cultured Human Osteoblasts Using Cinacalcet and Parathyroid Hormone. Calcif Tissue Int 2023; 112:452-462. [PMID: 36754901 PMCID: PMC10025212 DOI: 10.1007/s00223-023-01062-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023]
Abstract
Patients with type 2 diabetes mellitus (T2DM) experience a higher risk of fractures despite paradoxically exhibiting normal to high bone mineral density (BMD). This has drawn into question the applicability to T2DM of conventional fracture reduction treatments that aim to retain BMD. In a primary human osteoblast culture system, high glucose levels (25 mM) impaired cell proliferation and matrix mineralization compared to physiological glucose levels (5 mM). Treatment with parathyroid hormone (PTH, 10 nM), a bone anabolic agent, and cinacalcet (CN, 1 µM), a calcimimetic able to target the Ca2+-sensing receptor (CaSR), were tested for their effects on proliferation and differentiation. Strikingly, CN+PTH co-treatment was shown to promote cell growth and matrix mineralization under both physiological and high glucose conditions. CN+PTH reduced apoptosis by 0.9-fold/0.4-fold as measured by Caspase-3 activity assay, increased alkaline phosphatase (ALP) expression by 1.5-fold/twofold, increased the ratio of nuclear factor κ-B ligand (RANKL) to osteoprotegerin (OPG) by 2.1-fold/1.6-fold, and increased CaSR expression by 1.7-fold/4.6-fold (physiological glucose/high glucose). Collectively, these findings indicate a potential for CN+PTH combination therapy as a method to ameliorate the negative impact of chronic high blood glucose on bone remodeling.
Collapse
Affiliation(s)
- V A Shahen
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - A Schindeler
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the, Westmead Institute for Medical Research, Westmead, NSW, 2006, Australia
| | - M S Rybchyn
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - C M Girgis
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, Australia
- Department of Endocrinology, Royal North Shore Hospital, Sydney, Australia
| | - B Mulholland
- Graduate School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - R S Mason
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, 2006, Australia
| | - I Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - T C Brennan-Speranza
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
7
|
Chlebek C, Rosen CJ. The Role of Bone Cell Energetics in Altering Bone Quality and Strength in Health and Disease. Curr Osteoporos Rep 2023; 21:1-10. [PMID: 36435911 DOI: 10.1007/s11914-022-00763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Bone quality and strength are diminished with age and disease but can be improved by clinical intervention. Energetic pathways are essential for cellular function and drive osteogenic signaling within bone cells. Altered bone quality is associated with changes in the energetic activity of bone cells following diet-based or therapeutic interventions. Energetic pathways may directly or indirectly contribute to changes in bone quality. The goal of this review is to highlight tissue-level and bioenergetic changes in bone health and disease. RECENT FINDINGS Bone cell energetics are an expanding field of research. Early literature primarily focused on defining energetic activation throughout the lifespan of bone cells. Recent studies have begun to connect bone energetic activity to health and disease. In this review, we highlight bone cell energetic demands, the effect of substrate availability on bone quality, altered bioenergetics associated with disease treatment and development, and additional biological factors influencing bone cell energetics. Bone cells use several energetic pathways during differentiation and maturity. The orchestration of bioenergetic pathways is critical for healthy cell function. Systemic changes in substrate availability alter bone quality, potentially due to the direct effects of altered bone cell bioenergetic activity. Bone cell bioenergetics may also contribute directly to the development and treatment of skeletal diseases. Understanding the role of energetic pathways in the cellular response to disease will improve patient treatment.
Collapse
Affiliation(s)
- Carolyn Chlebek
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA.
| |
Collapse
|
8
|
Paensuwan P, Laorob T, Ngoenkam J, Wichai U, Pongcharoen S. Nitro Dihydrocapsaicin, a Non-Pungent Capsaicin Analogue, Inhibits Cellular Senescence of Lens Epithelial Cells via Upregulation of SIRT1. Int J Mol Sci 2022; 23:13960. [PMID: 36430438 PMCID: PMC9695757 DOI: 10.3390/ijms232213960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic cataracts are a common complication that can cause blindness among patients with diabetes mellitus. A novel nitro dihydrocapsaicin (NDHC), a capsaicin analog, was constructed to have a non-pungency effect. The objective of this research was to study the effect of NDHC on human lens epithelial (HLE) cells that lost function from hyperglycemia. HLE cells were pretreated with NDHC before an exposure to high glucose (HG) conditions. The results show that NDHC promoted a deacceleration of cellular senescence in HLE cells. This inhibition of cellular senescence was characterized by a delayed cell growth and lower production of reactive oxygen species (ROS) as well as decreased SA-β-galactosidase activity. Additionally, the expression of Sirt1 protein sharply increased, while the expression of p21 and phospho-p38 proteins decreased. These findings provide evidence that NDHC could exert a pharmacologically protective effect by inhibiting the senescence program of lens cells during diabetic cataracts.
Collapse
Affiliation(s)
- Pussadee Paensuwan
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Thanet Laorob
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Uthai Wichai
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
9
|
Klabklai P, Phetfong J, Tangporncharoen R, Isarankura-Na-Ayudhya C, Tawonsawatruk T, Supokawej A. Annexin A2 Improves the Osteogenic Differentiation of Mesenchymal Stem Cells Exposed to High-Glucose Conditions through Lessening the Senescence. Int J Mol Sci 2022; 23:ijms232012521. [PMID: 36293376 PMCID: PMC9604334 DOI: 10.3390/ijms232012521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is frequently found in chronic diabetic patients, and it results in an increased risk of bone fractures occurring. The underlying mechanism of osteoporosis in diabetic patients is still largely unknown. Annexin A2 (ANXA2), a family of calcium-binding proteins, has been reported to be involved in many biological process including bone remodeling. This study aimed to investigate the role of ANXA2 in mesenchymal stem cells (MSCs) during in vitro osteoinduction under high-glucose concentrations. Osteogenic gene expression, calcium deposition, and cellular senescence were determined. The high-glucose conditions reduced the osteogenic differentiation potential of the MSCs along with the lower expression of ANXA2. Moreover, the high-glucose conditions increased the cellular senescence of the MSCs as determined by senescence-associated β-galactosidase staining and the expression of p16, p21, and p53 genes. The addition of recombinant ANXA2 could recover the glucose-induced deterioration of the osteogenic differentiation of the MSCs and ameliorate the glucose-induced cellular senescence of the MSCs. A Western blot analysis revealed an increase in p53 and phosphorylated p53 (Ser 15), which was decreased by recombinant ANXA2 in MSC osteoblastic differentiation under high-glucose conditions. Our study suggested that the alteration of ANXA2 in high-glucose conditions may be one of the plausible factors in the deterioration of bones in diabetic patients by triggering cellular senescence.
Collapse
Affiliation(s)
- Parin Klabklai
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhonpathom 73170, Thailand
| | - Jitrada Phetfong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhonpathom 73170, Thailand
| | - Rattanawan Tangporncharoen
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhonpathom 73170, Thailand
| | - Chartchalerm Isarankura-Na-Ayudhya
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhonpathom 73170, Thailand
| | - Tulyapruek Tawonsawatruk
- Department of Orthopaedics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhonpathom 73170, Thailand
- Correspondence: ; Fax: +66-2-441-4380
| |
Collapse
|
10
|
Zha K, Tian Y, Panayi AC, Mi B, Liu G. Recent Advances in Enhancement Strategies for Osteogenic Differentiation of Mesenchymal Stem Cells in Bone Tissue Engineering. Front Cell Dev Biol 2022; 10:824812. [PMID: 35281084 PMCID: PMC8904963 DOI: 10.3389/fcell.2022.824812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Although bone is an organ that displays potential for self-healing after damage, bone regeneration does not occur properly in some cases, and it is still a challenge to treat large bone defects. The development of bone tissue engineering provides a new approach to the treatment of bone defects. Among various cell types, mesenchymal stem cells (MSCs) represent one of the most promising seed cells in bone tissue engineering due to their functions of osteogenic differentiation, immunomodulation, and secretion of cytokines. Regulation of osteogenic differentiation of MSCs has become an area of extensive research over the past few years. This review provides an overview of recent research progress on enhancement strategies for MSC osteogenesis, including improvement in methods of cell origin selection, culture conditions, biophysical stimulation, crosstalk with macrophages and endothelial cells, and scaffolds. This is favorable for further understanding MSC osteogenesis and the development of MSC-based bone tissue engineering.
Collapse
Affiliation(s)
- Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yue Tian
- Department of Military Patient Management, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| |
Collapse
|
11
|
Gong F, Gao L, Ma L, Li G, Yang J. Uncarboxylated osteocalcin alleviates the inhibitory effect of high glucose on osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells by regulating TP63. BMC Mol Cell Biol 2021; 22:24. [PMID: 33906607 PMCID: PMC8080387 DOI: 10.1186/s12860-021-00365-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Progressive population aging has contributed to the increased global prevalence of diabetes and osteoporosis. Inhibition of osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by hyperglycemia is a potential pathogenetic mechanism of osteoporosis in diabetic patients. Uncarboxylated osteocalcin (GluOC), a protein secreted by mature osteoblasts, regulates bone development as well as glucose and lipid metabolism. In our previous studies, GluOC was shown to promote osteoblastic differentiation of BMSCs; however, the underlying mechanisms are not well characterized. Tumor protein 63 (TP63), as a transcription factor, is closely related to bone development and glucose metabolism. RESULTS In this study, we verified that high glucose suppressed osteogenesis and upregulated adipogenesis in BMSCs, while GluOC alleviated this phenomenon. In addition, high glucose enhanced TP63 expression while GluOC diminished it. Knock-down of TP63 by siRNA transfection restored the inhibitory effect of high glucose on osteogenic differentiation. Furthermore, we detected the downstream signaling pathway PTEN/Akt/GSK3β. We found that diminishing TP63 decreased PTEN expression and promoted the phosphorylation of Akt and GSK3β. We then applied the activator and inhibitor of Akt, and concluded that PTEN/Akt/GSK3β participated in regulating the differentiation of BMSCs. CONCLUSIONS Our results indicate that GluOC reduces the inhibitory effect of high glucose on osteoblast differentiation by regulating the TP63/PTEN/Akt/GSK3β pathway. TP63 is a potential novel target for the prevention and treatment of diabetic osteoporosis.
Collapse
Affiliation(s)
- Fangzi Gong
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Le Gao
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Luyao Ma
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Guangxin Li
- College of sports medicine and physical therapy, Beijing Sport University, Beijing, China
| | - Jianhong Yang
- Medical School, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Role of Metabolism in Bone Development and Homeostasis. Int J Mol Sci 2020; 21:ijms21238992. [PMID: 33256181 PMCID: PMC7729585 DOI: 10.3390/ijms21238992] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Carbohydrates, fats, and proteins are the underlying energy sources for animals and are catabolized through specific biochemical cascades involving numerous enzymes. The catabolites and metabolites in these metabolic pathways are crucial for many cellular functions; therefore, an imbalance and/or dysregulation of these pathways causes cellular dysfunction, resulting in various metabolic diseases. Bone, a highly mineralized organ that serves as a skeleton of the body, undergoes continuous active turnover, which is required for the maintenance of healthy bony components through the deposition and resorption of bone matrix and minerals. This highly coordinated event is regulated throughout life by bone cells such as osteoblasts, osteoclasts, and osteocytes, and requires synchronized activities from different metabolic pathways. Here, we aim to provide a comprehensive review of the cellular metabolism involved in bone development and homeostasis, as revealed by mouse genetic studies.
Collapse
|