1
|
Varga K, Paszternák A, Kovács V, Guczogi A, Sikur N, Patakfalvi D, Bagaméry F, Szökő É, Tábi T. Differential Cytoprotective Effect of Resveratrol and Its Derivatives: Focus on Antioxidant and Autophagy-Inducing Effects. Int J Mol Sci 2024; 25:11274. [PMID: 39457058 PMCID: PMC11509103 DOI: 10.3390/ijms252011274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Numerous beneficial effects of resveratrol were reported; however, its pharmacological profile is contradictious. Previously, we have demonstrated that resveratrol has a dose-dependent cytoprotective effect and the essential role of autophagy induction was demonstrated. Resveratrol suffers from unfavorable pharmacokinetics, hindering its clinical use. Our aim was to study the cytoprotective effect of resveratrol derivatives to better understand structure-activity relationships that may facilitate the development of compounds with better druglike characteristics. Serum-deprivation-induced caspase activation, free radical generation, mitochondrial membrane depolarization and autophagy were detected in the presence of resveratrol analogs with different oxidation states on mouse embryonal fibroblasts. Distinct cytoprotective mechanisms of the examined compounds were revealed. Monomethyl resveratrol had similar potency to resveratrol (EC50: 85.3 vs. 84.2 μM); however, autophagy induction was not essential for its cytoprotective effect. Oxyresveratrol was found to be a strong antioxidant that can induce direct cytoprotection rather than autophagy. Trimethyl-resveratrol, lacking free hydroxyl groups, induced damage that was too significant and hardly compensated by the activation of cytoprotective machineries, and caspase activation was reduced by only 24.5%. Based on our results, methylation of resveratrol reduces its antioxidant activity, while autophagy induction can still contribute to its cytoprotective effect. The introduction of an additional hydroxyl group, however, augments the antioxidant properties, inducing cytoprotection without autophagy induction.
Collapse
Affiliation(s)
- Kamilla Varga
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Alexandra Paszternák
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Virág Kovács
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Annamária Guczogi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Noémi Sikur
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Dimitrisz Patakfalvi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Fruzsina Bagaméry
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| |
Collapse
|
2
|
Cao Y, Fang X, Sun M, Zhang Y, Shan M, Lan X, Zhu D, Luo H. Preventive and therapeutic effects of natural products and herbal extracts on nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Phytother Res 2023; 37:3867-3897. [PMID: 37449926 DOI: 10.1002/ptr.7932] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common condition that is prevalent in patients who consume little or no alcohol, and is characterized by excessive fat accumulation in the liver. The disease is becoming increasingly common with the rapid economic development of countries. Long-term accumulation of excess fat can lead to NAFLD, which represents a global health problem with no effective therapeutic approach. NAFLD is a complex, multifaceted pathological process that has been the subject of extensive research over the past few decades. Herbal medicines have gained attention as potential therapeutic agents to prevent and treat NAFLD due to their high efficacy and low risk of side effects. Our overview is based on a PubMed and Web of Science database search as of Dec 22 with the keywords: NAFLD/NASH Natural products and NAFLD/NASH Herbal extract. In this review, we evaluate the use of herbal medicines in the treatment of NAFLD. These natural resources have the potential to inform innovative drug research and the development of treatments for NAFLD in the future.
Collapse
Affiliation(s)
- Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mingyang Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Ramos MJ, Bandiera L, Menolascina F, Fallowfield JA. In vitro models for non-alcoholic fatty liver disease: Emerging platforms and their applications. iScience 2022; 25:103549. [PMID: 34977507 PMCID: PMC8689151 DOI: 10.1016/j.isci.2021.103549] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a global healthcare challenge, affecting 1 in 4 adults, and death rates are predicted to rise inexorably. The progressive form of NAFLD, non-alcoholic steatohepatitis (NASH), can lead to fibrosis, cirrhosis, and hepatocellular carcinoma. However, no medical treatments are licensed for NAFLD-NASH. Identifying efficacious therapies has been hindered by the complexity of disease pathogenesis, a paucity of predictive preclinical models and inadequate validation of pharmacological targets in humans. The development of clinically relevant in vitro models of the disease will pave the way to overcome these challenges. Currently, the combined application of emerging technologies (e.g., organ-on-a-chip/microphysiological systems) and control engineering approaches promises to unravel NAFLD biology and deliver tractable treatment candidates. In this review, we will describe advances in preclinical models for NAFLD-NASH, the recent introduction of novel technologies in this space, and their importance for drug discovery endeavors in the future.
Collapse
Affiliation(s)
- Maria Jimenez Ramos
- Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Lucia Bandiera
- Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3BF, UK.,Synthsys - Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Filippo Menolascina
- Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3BF, UK.,Synthsys - Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jonathan Andrew Fallowfield
- Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| |
Collapse
|
4
|
Ramos MJ, Bandiera L, Menolascina F, Fallowfield JA. In vitro models for non-alcoholic fatty liver disease: Emerging platforms and their applications. iScience 2022; 25:103549. [PMID: 34977507 DOI: 10.1016/j.isci] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a global healthcare challenge, affecting 1 in 4 adults, and death rates are predicted to rise inexorably. The progressive form of NAFLD, non-alcoholic steatohepatitis (NASH), can lead to fibrosis, cirrhosis, and hepatocellular carcinoma. However, no medical treatments are licensed for NAFLD-NASH. Identifying efficacious therapies has been hindered by the complexity of disease pathogenesis, a paucity of predictive preclinical models and inadequate validation of pharmacological targets in humans. The development of clinically relevant in vitro models of the disease will pave the way to overcome these challenges. Currently, the combined application of emerging technologies (e.g., organ-on-a-chip/microphysiological systems) and control engineering approaches promises to unravel NAFLD biology and deliver tractable treatment candidates. In this review, we will describe advances in preclinical models for NAFLD-NASH, the recent introduction of novel technologies in this space, and their importance for drug discovery endeavors in the future.
Collapse
Affiliation(s)
- Maria Jimenez Ramos
- Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Lucia Bandiera
- Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3BF, UK
- Synthsys - Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Filippo Menolascina
- Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3BF, UK
- Synthsys - Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jonathan Andrew Fallowfield
- Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| |
Collapse
|