1
|
Palpperumal S, Sankaralingam S, Balachandran C, Mahendran S, Venkatesh S, Alharbi NS, Thiruvengadam M, Duraipandiyan V, Baskar K. Antioxidant, Anticancer, Hepatoprotective and Wound Healing Activity of Fucopyranose (Sulfated Polysaccharides) from Padina pavonica (L.). Indian J Microbiol 2024; 64:1805-1825. [PMID: 39678974 PMCID: PMC11645345 DOI: 10.1007/s12088-024-01237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/23/2024] [Indexed: 12/17/2024] Open
Abstract
The emergence of various diseases such as cardiovascular, aging and cancer are due to oxidative stress as well as the shortage of enough antioxidant materials. Our study was intended to analyze the anticancer, antimicrobial, wound healing as well as hepatoprotective activities of purified sulfated polysaccharides derived from P. pavonica. The sulfated polysaccharide was subjected to partial purification using DEAE cellulose. The sulfated fraction was identified by HPLC, FTIR, 1H-NMR and GC-MS. The results showed that the presence of fucopyranose in sulfated polysaccharide was attached to the O-acetyl groups confirmed by 1H-NMR analysis. Further P. pavonica was carried out for the antioxidant profiling of sulfated polysaccharide through various standard assays. Bioactive principles of sulfated polysaccharides in medicinal fields were confirmed by anticancer activity on MDA-MB-231 breast cancer cells and wound healing activity in four groups of albino rats. The hepatoprotective activity of sulfated fraction was determined based on their biochemical parameters. Emulsification activity of sulfated polysaccharide was also evaluated. Also, it has antimicrobial properties. Our report has pointed out that the supplementation of sulfated polysaccharides would prevent the formation of cancer and oxidative damage of biomolecules.
Collapse
Affiliation(s)
- Selvam Palpperumal
- PG and Research Department of Microbiology, V. H. N. Senthikumara Nadar College (Autonomous), Virudhunagar, Tamil Nadu India
| | - Subbiah Sankaralingam
- PG and Research Department of Botany, Saraswathi Narayanan College, Madurai, Tamil Nadu India
| | | | - Shunmugiah Mahendran
- Department of Microbiology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi, Tamil Nadu 626 124 India
| | - Sakthivel Venkatesh
- PG and Research Department of Botany, Saraswathi Narayanan College, Madurai, Tamil Nadu India
| | - Naiyf S. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, 05029 South Korea
| | - Veeramuthu Duraipandiyan
- Division of Phytochemistry and Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu 600034 India
| | - Kathirvelu Baskar
- Department of Ecotoxicology, Deputy Test Facility Management, Ross Lifescience, Limited, Bhosari, Pune, India
| |
Collapse
|
2
|
B J, R R. A critical review on pharmacological properties of sulfated polysaccharides from marine macroalgae. Carbohydr Polym 2024; 344:122488. [PMID: 39218536 DOI: 10.1016/j.carbpol.2024.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
The marine ecosystem contains an assorted range of organisms, among which macroalgae stands out marine resources as an invaluable reservoir of structurally diverse bioactive compounds. Marine macroalgae are considered as primary consumers have gained more attention for their bioactive components. Sulfated polysaccharides (SPs) are complex polymers found in macroalgae that play a crucial role in their cell wall composition. This review consolidates high-tech methodologies employed in the extraction of macroalgal SPs, offering a valuable resource for researchers focuses in the pharmacological relevance of marine macromolecules. The pharmacological activities of SPs, focusing on their therapeutic action by encompassing diverse study models are summarized. Furthermore, in silico docking studies facilitates a comprehensive understanding of SPs interactions with their binding sites providing a valuable insight for future endeavors. The biological properties of algal SPs, along with a brief reference to mode of action based on different targets are presented. This review utilizes up-to-date research discoveries across various study models to elucidate the biological functions of SPs, focusing on their molecular-level mechanisms and offering insights for prospective investigations. Besides, the significance of SPs from seaweeds is highlighted, showcasing their potential beneficial applications in promoting human health. With promising biomedical prospects, this review explores the extensive uses and experimental evidence supporting the important roles of SPs in various fields.
Collapse
Affiliation(s)
- Jegadeshwari B
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Rajaram R
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
3
|
Mulder PPG, Hooijmans CR, Vlig M, Middelkoop E, Joosten I, Koenen HJPM, Boekema BKHL. Kinetics of Inflammatory Mediators in the Immune Response to Burn Injury: Systematic Review and Meta-Analysis of Animal Studies. J Invest Dermatol 2024; 144:669-696.e10. [PMID: 37806443 DOI: 10.1016/j.jid.2023.09.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Burns are often accompanied by a dysfunctional immune response, which can lead to systemic inflammation, shock, and excessive scarring. The objective of this study was to provide insight into inflammatory pathways associated with burn-related complications. Because detailed information on the various inflammatory mediators is scattered over individual studies, we systematically reviewed animal experimental data for all reported inflammatory mediators. Meta-analyses of 352 studies revealed a strong increase in cytokines, chemokines, and growth factors, particularly 19 mediators in blood and 12 in burn tissue. Temporal kinetics showed long-lasting surges of proinflammatory cytokines in blood and burn tissue. Significant time-dependent effects were seen for IL-1β, IL-6, TGF-β1, and CCL2. The response of anti-inflammatory mediators was limited. Burn technique had a profound impact on systemic response levels. Large burn size and scalds further increased systemic, but not local inflammation. Animal characteristics greatly affected inflammation, for example, IL-1β, IL-6, and TNF-α levels were highest in young, male rats. Time-dependent effects and dissimilarities in response demonstrate the importance of appropriate study design. Collectively, this review presents a general overview of the burn-induced immune response exposing inflammatory pathways that could be targeted through immunotherapy for burn patients and provides guidance for experimental set-ups to advance burn research.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Carlijn R Hooijmans
- Meta-Research Team, Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Mulder PPG, Koenen HJPM, Vlig M, Joosten I, de Vries RBM, Boekema BKHL. Burn-Induced Local and Systemic Immune Response: Systematic Review and Meta-Analysis of Animal Studies. J Invest Dermatol 2022; 142:3093-3109.e15. [PMID: 35623415 DOI: 10.1016/j.jid.2022.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 10/31/2022]
Abstract
As burn injuries are often followed by a derailed immune response and excessive inflammation, a thorough understanding of the occurring reactions is key to prevent secondary complications. This systematic review, that includes 247 animal studies, shows the post-burn response of 14 different immune cell types involved in immediate and long-term effects, in both wound tissue and circulation. Peripheral blood neutrophil and monocyte numbers increased directly after burns, whereas thrombocyte numbers increased near the end of the first week. Lymphocyte numbers, however, were decreased for at least two weeks. In burn wound tissue, neutrophil and macrophage numbers accumulated during the first three weeks. Burns also altered cellular functions as we found increased migratory potential of leukocytes, impaired antibacterial activity of neutrophils and enhanced inflammatory mediator production by macrophages. Neutrophil surges were positively associated with burn size and were highest in rats. Altogether, this comprehensive overview of the temporal immune cell dynamics shows that unlike normal wound healing, burn injury induces a long-lasting inflammatory response. It provides a fundamental research basis to improve experimental set-ups, burn care and outcome.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Association of Dutch Burn Centres (ADBC), Preclinical Research, Beverwijk, the Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marcel Vlig
- Association of Dutch Burn Centres (ADBC), Preclinical Research, Beverwijk, the Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rob B M de Vries
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bouke K H L Boekema
- Association of Dutch Burn Centres (ADBC), Preclinical Research, Beverwijk, the Netherlands
| |
Collapse
|
5
|
Bhardwaj M, Mani S, Malarvizhi R, Sali VK, Vasanthi HR. Immunomodulatory activity of brown algae Turbinaria ornata derived sulfated polysaccharide on LPS induced systemic inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 89:153615. [PMID: 34153878 DOI: 10.1016/j.phymed.2021.153615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Inflammation and oxidative stress are common pathologies in a wide range of chronic diseases. Polysaccharides are known to exhibit antioxidant and anti-inflammatory potential and are suggested to possess immunomodulatory potential. PURPOSE Herein, the immunomodulatory activity of a sulfated polysaccharide (PS) separated from a brown marine algae Turbinaria ornata is studied in LPS instigated systemic inflammation in experimental rats. STUDY DESIGN AND METHODS Male SD rats are pretreated with different doses of PS (2.5, 5, 10 mg/kg bw) for a week followed by inducing systemic inflammation using LPS (10 mg/kg i.p.). Blood withdrawn after 8 h of LPS injection is subjected to hematological analysis (WBC, HCT, and PLT). After 24 h of LPS induction, cardiac tissue was isolated and subjected to biochemical, molecular, and histopathological analysis. Effect of PS pre-treatment (2.5, 5, 10 mg/kg bw) was checked by assessing serum parameters (AST, CK-MB, and γGT), antioxidant markers (LPO, GSH, SOD, Grx) and inflammatory markers (IL1β, IL6, IL10, NFκB), followed by analyzing the iNOS, PI3k and Akt to identify the probable mode of action. RESULTS Elevated levels of AST, CK-MB, and γGT in serum were significantly reduced on PS pretreatment. LPS significantly raised the LPO and Grx levels in heart tissue whereas, PS pre-treatment significantly reduced LPO and Grx levels. GSH and SOD levels were reduced upon LPS induction and were brought to near normal by HD of PS. PS also reduced the mRNA levels of IL6, Trx, and increased IL10 levels in the heart tissue substantiating its anti-inflammatory and antioxidant potency. Further, IL1β, NFκB, iNOS, and pPI3k/pAkt expressions were significantly modulated by PS in the cardiac tissue substantiating the immunomodulatory effect. A trend of improvement in the inflammatory pathology was also observed in the heart tissue compared to LPS control, as confirmed by histopathology analysis. CONCLUSION Altogether, this study concludes the immunomodulatory potential of PS from the marine macroalgae Turbinaria ornata significantly and prevents LPS induced systemic inflammation in the cardiac tissue presumably influenced by the glucopyranose and fucopyranose subunits in the polysaccharide.
Collapse
Affiliation(s)
- Meenakshi Bhardwaj
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Sugumar Mani
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - R Malarvizhi
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Veeresh Kumar Sali
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Hannah R Vasanthi
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|