1
|
Pang J, Huang C, Wang Y, Wen X, Deng P, Li T, Wang C, Liu X, Chen C, Zhao J, Ji W. Molecular Cytological Analysis and Specific Marker Development in Wheat-Psathyrostachys huashanica Keng 3Ns Additional Line with Elongated Glume. Int J Mol Sci 2023; 24:ijms24076726. [PMID: 37047699 PMCID: PMC10094845 DOI: 10.3390/ijms24076726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) is an excellent gene resource for wheat breeding, which is characterized by early maturity, low plant height, and disease resistance. The wheat-P. huashanica derivatives were created by the elite genes of P. huashanica and permeate into common wheat through hybridization. Among them, a long-glume material 20JH1155 was identified, with larger grains and longer spike than its parents. In the present study, the methods of cytological observation, GISH, and sequential FISH analysis showed that 20JH1155 contained 21 pairs of wheat chromosomes and a pair of P. huashanica. There were some differences in 5A and 7B chromosomes between 20JH1155 and parental wheat 7182. Molecular marker, FISH, and sequence cloning indicated 20JH1155 alien chromosomes were 3Ns of P. huashanica. In addition, differentially expressed genes during immature spikelet development of 20JH1155 and 7182 and predicted transcription factors were obtained by transcriptome sequencing. Moreover, a total of 7 makers derived from Ph#3Ns were developed from transcriptome data. Taken together, the wheat-P. huashanica derived line 20JH1155 provides a new horizon on distant hybridization of wheat and accelerates the utilization of genes of P. huashanica.
Collapse
Affiliation(s)
- Jingyu Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Chenxi Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Yuesheng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Xinyu Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Tingdong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Jixin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| |
Collapse
|
2
|
Transgenic Improvement for Biotic Resistance of Crops. Int J Mol Sci 2022; 23:ijms232214370. [PMID: 36430848 PMCID: PMC9697442 DOI: 10.3390/ijms232214370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Biotic constraints, including pathogenic fungi, viruses and bacteria, herbivory insects, as well as parasitic nematodes, cause significant yield loss and quality deterioration of crops. The effect of conventional management of these biotic constraints is limited. The advances in transgenic technologies provide a direct and directional approach to improve crops for biotic resistance. More than a hundred transgenic events and hundreds of cultivars resistant to herbivory insects, pathogenic viruses, and fungi have been developed by the heterologous expression of exogenous genes and RNAi, authorized for cultivation and market, and resulted in a significant reduction in yield loss and quality deterioration. However, the exploration of transgenic improvement for resistance to bacteria and nematodes by overexpression of endogenous genes and RNAi remains at the testing stage. Recent advances in RNAi and CRISPR/Cas technologies open up possibilities to improve the resistance of crops to pathogenic bacteria and plant parasitic nematodes, as well as other biotic constraints.
Collapse
|
3
|
Ji X, Liu T, Xu S, Wang Z, Han H, Zhou S, Guo B, Zhang J, Yang X, Li X, Li L, Liu W. Comparative Transcriptome Analysis Reveals the Gene Expression and Regulatory Characteristics of Broad-Spectrum Immunity to Leaf Rust in a Wheat- Agropyron cristatum 2P Addition Line. Int J Mol Sci 2022; 23:7370. [PMID: 35806373 PMCID: PMC9266861 DOI: 10.3390/ijms23137370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Wheat leaf rust (caused by Puccinia triticina Erikss.) is among the major diseases of common wheat. The lack of resistance genes to leaf rust has limited the development of wheat cultivars. Wheat-Agropyron cristatum (A. cristatum) 2P addition line II-9-3 has been shown to provide broad-spectrum immunity to leaf rust. To identify the specific A. cristatum resistance genes and related regulatory pathways in II-9-3, we conducted a comparative transcriptome analysis of inoculated and uninoculated leaves of the resistant addition line II-9-3 and the susceptible cultivar Fukuhokomugi (Fukuho). The results showed that there were 66 A. cristatum differentially expressed genes (DEGs) and 1389 wheat DEGs in II-9-3 during P. triticina infection. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and gene set enrichment analysis (GSEA) revealed that the DEGs of II-9-3 were associated with plant-pathogen interaction, MAPK signaling pathway-plant, plant hormone signal transduction, glutathione metabolism, and phenylpropanoid biosynthesis. Furthermore, many defense-related A. cristatum genes, such as two NLR genes, seven receptor kinase-encoding genes, and four transcription factor-encoding genes, were identified. Our results indicated that the key step of resistance to leaf rust involves, firstly, the gene expression of chromosome 2P upstream of the immune pathway and, secondly, the effect of chromosome 2P on the co-expression of wheat genes in II-9-3. The disease resistance regulatory pathways and related genes in the addition line II-9-3 thus could play a critical role in the effective utilization of innovative resources for leaf rust resistance in wheat breeding.
Collapse
Affiliation(s)
- Xiajie Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Shirui Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Zongyao Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Haiming Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Shenghui Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Baojin Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Jinpeng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Xinming Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Xiuquan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Weihua Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| |
Collapse
|
4
|
QTL mapping for adult plant resistance to wheat stripe rust in M96-5 × Guixie 3 wheat population. J Appl Genet 2022; 63:265-279. [PMID: 35338429 PMCID: PMC8979893 DOI: 10.1007/s13353-022-00686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 11/02/2022]
Abstract
Development of cultivars with multiple resistances has proven to be an effective way to prevent diseases in wheat breeding. The Guixie 3 variety (GX3) has shown excellent performance in resistance to stripe rust in field for many years. The purpose of this study was to detect quantitative trait loci (QTL) associated with resistance to stripe rust in the adult plant stage and determine closely linked molecular markers. A population of recombinant inbred lines (n = 228) was derived from a cross between the susceptible landrace Mian 96-5 (M96-5) and GX3 variety and evaluated in multiple field studies, and QTL analysis enabled to elucidate genetic architecture of wheat resistance to stripe rust. A total of 19 QTL for stripe rust resistance were mapped on 12 chromosomes using phenotypic data from multiple field tests over the course of 6 years. These chromosomes included 1B (2), 1D (2), 2A (2), 2B (2), 2D (1), 4B (2), 4D (1), 5A (3), 5B (1), 6A (1), 6B (1), and 7B (1). Two stable QTL on chromosomes 2AS (Qyr.gaas.2A) and 6AL (Qyr.gaas.6A) were detected in six and five different environments, respectively; in both QTL, positive allele was contributed by GX3 variety. Qyr.gaas.2A was found to be crucial for increasing adult plant resistance, which may explain the large phenotypic variation of 45.52%. Our results provide theoretical and molecular insight for wheat breeding and suggest the cloning of genes associated with the GX3 variety may be beneficial in future studies.
Collapse
|
5
|
Phenotyping and validation of molecular markers associated with rust resistance genes in wheat cultivars in Egypt. Mol Biol Rep 2021; 49:1903-1915. [PMID: 34843039 DOI: 10.1007/s11033-021-07002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Thirteen Egyptian wheat cultivars were evaluated and characterized for adult plant resistance to yellow, leaf, and stem rusts. SSR markers linked to yellow, leaf and stem rust resistance genes were validated and subsequently used to identify wheat cultivars containing more than one rust resistance gene. RESULTS Results of the molecular marker detection indicated that several genes, either alone or in different combinations, were present among the wheat cultivars, including Yr, Yr78 (stripe rust), Lr, Lr70 (leaf rust), Sr. Sr33, SrTA10187, Sr13, and Sr35 (stem rust), and Lr34/Yr18 and Lr49/Yr29 (leaf/stripe rust). The cultivar Sakha-95 was resistant to leaf and stem rusts, and partially resistant to stripe rust; however, this cultivar contained additional rust resistance genes (Lr, Sr and Lr/Yr). The area under the disease progress curve (AUDPC) type for the various wheat cultivars differed depending on the type of rust infection (yellow, leaf, or stem rust, indicated by Yr, Lr, and Sr). The cultivars Gem-12, Sids-14, Giza-171, and Giza-168 had AUDPC types of partial resistance and resistance. All six cultivars, however, contained additional rust resistance genes. CONCLUSIONS Marker-assisted selection can be applied to improve wheat cultivars with efficient gene combinations that would directly support the development of durable resistance in Egypt. Once the expression of the resistance genes targeted in this study have been confirmed by phenotypic screening, the preferable cultivars can be used as donors by Egyptian wheat breeders. The results of this study will help breeders determine the extent of resistance under field conditions when breeding for rust resistance in bread wheat.
Collapse
|