1
|
Sawicki K, Matysiak-Kucharek M, Gorczyca-Siudak D, Kruszewski M, Kurzepa J, Kapka-Skrzypczak L, Dziemidok P. Leukocyte Telomere Length as a Marker of Chronic Complications in Type 2 Diabetes Patients: A Risk Assessment Study. Int J Mol Sci 2024; 26:290. [PMID: 39796144 PMCID: PMC11719939 DOI: 10.3390/ijms26010290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Telomere shortening has been linked to type 2 diabetes (T2D) and its complications. This study aims to determine whether leukocyte telomere length (LTL) could be a useful marker in predicting the onset of complications in patients suffering from T2D. Enrolled study subjects were 147 T2D patients. LTL was measured using a quantitative PCR method. Key subject's demographics and other clinical characteristics were also included. T2D patients with the shortest LTL had higher TC and non-HDL levels, compared to subjects with the longest LTL (p = 0.013). Also, T2D patients suffering from diabetic nephropathy showed significant differences in LDL levels (p = 0.023). While in the group of T2D patients with diabetic retinopathy, significant differences were observed for parameters, such as duration of diabetes (p = 0.043), HbA1c (p = 0.041), TC (p = 0.003), LDL (p = 0.015), Non-HDL (p = 0.004) and TG (p = 0.045). Logistic regression analysis confirmed a significant risk of association of TC and Non-HDL levels with LTL in the 3rd tertile LTL for the crude model adjusted for sex and age, with respective odds ratios of 0.71 (95% CI 0.56-0.91) and 0.73 (95% CI 0.58-0.91). No significant associations were found between LTL in T2D patients and the prevalence of common T2D complications. Nevertheless, a significant association was demonstrated between LTL and some markers of dyslipidemia, including in T2D patients with either diabetic nephropathy or retinopathy. Therefore, analysis of LTL in T2D patients' leukocytes demonstrates a promising potential as a marker in predicting the onset of complications in T2D. This could also help in establishing an effective treatment strategy or even prevent and delay the onset of these severe complications.
Collapse
Affiliation(s)
- Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.M.-K.); (M.K.); (L.K.-S.)
| | - Magdalena Matysiak-Kucharek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.M.-K.); (M.K.); (L.K.-S.)
| | - Daria Gorczyca-Siudak
- Department of Diabetes, Institute of Rural Health, 20-090 Lublin, Poland; (D.G.-S.); (P.D.)
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.M.-K.); (M.K.); (L.K.-S.)
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.M.-K.); (M.K.); (L.K.-S.)
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Piotr Dziemidok
- Department of Diabetes, Institute of Rural Health, 20-090 Lublin, Poland; (D.G.-S.); (P.D.)
| |
Collapse
|
2
|
He X, Cao L, Fu X, Wu Y, Wen H, Gao Y, Huo W, Wang M, Liu M, Su Y, Liu G, Zhang M, Hu F, Hu D, Zhao Y. The Association Between Telomere Length and Diabetes Mellitus: Accumulated Evidence From Observational Studies. J Clin Endocrinol Metab 2024; 110:e177-e185. [PMID: 39087945 DOI: 10.1210/clinem/dgae536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE In order to assess the associations between telomere length (TL) and diabetes mellitus (DM), especially type 2 diabetes (T2DM), we performed this systematic review and meta-analysis. METHODS PubMed, Embase, and Web of Science were thoroughly searched up to July 11, 2023. The pooled standardized mean difference (SMD) and the 95% confidence interval (CI) were evaluated using the random-effects model. Age, sex, study design, duration of diabetes, region, sample size, and body mass index (BMI) were used to stratify subgroup analyses. RESULTS A total of 37 observational studies involving 18 181 participants from 14 countries were included in the quantitative meta-analysis. In this study, patients with diabetes had shorter TL than the non-diabetic, whether those patients had T1DM (-2.70; 95% CI: -4.47, -0.93; P < .001), T2DM (-3.70; 95% CI: -4.20, -3.20; P < .001), or other types of diabetes (-0.71; 95% CI: -1.10, -0.31; P < .001). Additionally, subgroup analysis of T2DM showed that TL was significantly correlated with age, sex, study design, diabetes duration, sample size, detection method, region, and BMI. CONCLUSION A negative correlation was observed between TL and DM. To validate this association in the interim, more extensive, superior prospective investigations and clinical trials are required.
Collapse
Affiliation(s)
- Xinxin He
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Lu Cao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Xueru Fu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuying Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Hongwei Wen
- Department of Public Health, Zhengzhou Shuqing Medical College, Zhengzhou, Henan 450000, People's Republic of China
| | - Yajuan Gao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Weifeng Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Mengdi Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Mengna Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yijia Su
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Ge Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong 518060, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong 518060, People's Republic of China
| | - Dongsheng Hu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
3
|
Ahmed R, Saba AA, Paul A, Nur J, Alam MS, Chakraborty S, Howlader MZH, Islam LN, Nabi AHMN. Intronic Variants of the Angiotensin-Converting Enzyme 2 Gene Modulate Plasma ACE2 Levels and Possibly Confer Protection against Severe COVID-19. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5705076. [PMID: 37929242 PMCID: PMC10622595 DOI: 10.1155/2023/5705076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 10/07/2023] [Indexed: 11/07/2023]
Abstract
Membrane-bound angiotensin-converting enzyme 2 (ACE2) receptor acts as the entry point for the novel coronavirus, SARS-CoV-2. Polymorphisms in the ACE2 gene may alter viral binding, regulate the expression of ACE2, and thus, affect disease severity. In this study, 68 COVID-19 patients with varying degrees of severity and 40 healthy controls were enrolled. The genetic landscape of the ACE2 gene was explored by whole exome sequencing of 29 individuals, and specific regions of ACE2 were analyzed for the rest of the participants via PCR, followed by barcode-tagged sequencing. The mean soluble ACE2 level in the plasma of healthy controls and patients did not vary significantly but was higher in the patient group (3.77 ± 1.55 ng/mL vs. 3.94 ± 1.42 ng/mL). Analysis of exon 1, exon 2, and exon 8 of the ACE2 gene revealed that these regions are highly conserved in our population. Investigation of exon 11 and its flanking intronic region revealed that deletions in a stretch of 18T nucleotides in the noncoding region significantly decrease ACE2 levels in plasma, as individuals harboring wild-type variants had higher plasma ACE2 levels compared to those harboring T1del, T2del, and T3del variants. However, the intronic variants were not found to be significantly associated with disease severity.
Collapse
Affiliation(s)
- Rubaiat Ahmed
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abdullah Al Saba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Anik Paul
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jasmin Nur
- Department of Immunology, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Shahbag, Dhaka, Bangladesh
| | - Md Sohrab Alam
- Department of Immunology, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Shahbag, Dhaka, Bangladesh
| | - Sajib Chakraborty
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Zakir Hossain Howlader
- Laboratory of Nutrition and Health Research, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Laila N. Islam
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - A. H. M. Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
4
|
Genetic Variants of the TERT Gene and Telomere Length in Obstructive Sleep Apnea. Biomedicines 2022; 10:biomedicines10112755. [PMID: 36359275 PMCID: PMC9688013 DOI: 10.3390/biomedicines10112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Obstructive sleep apnea (OSA) is a worldwide breathing disorder that has been diagnosed globally in almost 1 billion individuals aged 30−69 years. It is characterized by repeated upper airway collapses during sleep. Telomerase reverse transcriptase (TERT) is involved in the prevention of telomere shortening. This prospective, observational study aimed to investigate the relationship between single nucleotide polymorphisms (SNPs) of TERT and the severity of OSA, taking into account hypertension and diabetes prevalence. Methods: A total of 149 patients with OSA were diagnosed using one-night video-polysomnography based on the American Academy of Sleep Medicine guidelines. The TERT SNPs and telomere length (TL) were detected using real-time quantitative polymerase chain reaction. Results: Statistical analysis showed that there is no relationship between the rs2853669 and rs2736100 polymorphisms of TERT, and the severity of OSA (p > 0.05). Moreover, no relationship between TL and the severity of OSA was observed. The G allele in the locus of rs2736100 TERT was associated with hypertension prevalence and was more prevalent in hypertensives patients (46.00% vs. 24.49%, p = 0.011). The prevalence of hypertension was higher in patients with the C allele in the locus of rs2853669 than in patients without this allele (50.79% vs. 30.23%, p = 0.010). Moreover, a lower prevalence of diabetes was observed in homozygotes of rs2736100 TERT than in heterozygotes (5.63% vs. 15.38%, p = 0.039). Conclusion: This study showed no relationship between OSA and TERT SNPs. However, SNPs of the TERT gene (rs2736100 and rs2853669) were found to affect arterial hypertension and diabetes prevalence.
Collapse
|
5
|
Al Rimon R, Sayem M, Alam S, Al Saba A, Sanyal M, Amin MR, Kabir A, Chakraborty S, Nabi AHMN. The polymorphic landscape analysis of GATA1 exons uncovered the genetic variants associated with higher thrombocytopenia in dengue patients. PLoS Negl Trop Dis 2022; 16:e0010537. [PMID: 35771876 PMCID: PMC9278737 DOI: 10.1371/journal.pntd.0010537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 07/13/2022] [Accepted: 05/26/2022] [Indexed: 12/01/2022] Open
Abstract
The current study elucidated an association between gene variants and thrombocytopenia through the investigation of the exonic polymorphic landscape of hematopoietic transcription factor-GATA1 gene in dengue patients. A total of 115 unrelated dengue patients with dengue fever (DF) (N = 91) and dengue hemorrhagic fever (DHF) (N = 24) were included in the study. All dengue patients were confirmed through detection of NS1 antigen, IgM, and IgG antibodies against the dengue virus. Polymerase chain reaction using specific primers amplified the exonic regions of GATA1 while Sanger sequencing and chromatogram analyses facilitated the identification of variants. Variants G>A (at chX: 48792009) and C>A (at chX: 4879118) had higher frequency out of 13 variants identified (3 annotated and 10 newly recognized). Patients carrying either nonsynonymous or synonymous variants had significantly lower mean values of platelets compared to those harboring the reference nucleotides (NC_000023.11). Further analyses revealed that the change in amino acid residue leads to the altered three-dimensional structure followed by interaction with neighboring residues. Increased stability of the protein due to substitution of serine by asparagine (S129N at chX: 48792009) may cause increased rigidity followed by reduced structural flexibility which may ultimately disturb the dimerization (an important prerequisite for GATA1 to perform its biological activity) process of the GATA1 protein. This, in turn, may affect the function of GATA1 followed by impaired production of mature platelets which may be reflected by the lower platelet counts in individuals with such variation. In summary, we have identified new variants within the GATA1 gene which were found to be clinically relevant to the outcome of dengue patients and thus, have the potential as candidate biomarkers for the determination of severity and prognosis of thrombocytopenia caused by dengue virus. However, further validation of this study in a large number of dengue patients is warranted. Trial Registration: number SLCTR/2019/037.
Collapse
Affiliation(s)
- Razoan Al Rimon
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Mohammad Sayem
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Saruar Alam
- Translational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Abdullah Al Saba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Mousumi Sanyal
- Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Md. Robed Amin
- Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Ahmedul Kabir
- Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Sajib Chakraborty
- Translational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - A. H. M. Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
6
|
Rai S, Badarinath ARS, George A, Sitaraman S, Bronson SC, Anandt S, Babu KT, Moses A, Saraswathy R, Hande MP. Association of telomere length with diabetes mellitus and idiopathic dilated cardiomyopathy in a South Indian population: A pilot study. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 874-875:503439. [PMID: 35151422 DOI: 10.1016/j.mrgentox.2021.503439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Telomere shortening has been associated with ageing and with many age-related diseases including cancer, coronary artery disease, heart failure and diabetes. We sought to investigate the link between telomere shortening and age-related diseases like type 2 diabetes mellitus (DM) (without any complications: DM; with neuropathic complication: DN) and idiopathic dilated cardiomyopathy (IDCM) in south Indian population. We compared telomere lengths of blood lymphocytes taken from patients with associated age-related diseases, namely DM (n = 47), DN (n = 52) and IDCM (n = 34) and controls (n = 46). In addition, we evaluated the relationship between echocardiographic left ventricular ejection fraction (LVEF), left ventricular end diastolic and systolic diameters (LVEDd and LVESd) and telomere length in IDCM patients. Telomere length negatively correlated with age in the cohorts with diabetes and IDCM, and in controls. Average telomere length in diabetes and IDCM patients was significantly shorter than that of controls either before or after adjustments for age and sex. Duration of diabetes in patients with type 2 diabetes did not correlate with telomere length. No correlation was found between the length of telomeres and echocardiography parameters like LVEF, LVEDd and LVESd in IDCM patients. Though echocardiographic characteristics of IDCM did not correlate with telomere length, telomere shortening was found to be accelerated in diabetes (both DM and DN) and IDCM in a south Indian population. Neuropathic complication in diabetes had no effect on telomere shortening. While telomere shortening is a cause or a consequence of diabetic and cardiac pathology remains further investigation, the current study substantiates the usefulness of telomere length measurements as a marker in conjunction with other biochemical markers of age-related diseases.
Collapse
Affiliation(s)
- Shivam Rai
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - A R S Badarinath
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Alex George
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Sneha Sitaraman
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Stephen Charles Bronson
- Institute of Diabetology, Madras Medical College & Rajiv Gandhi Government General Hospital, Chennai, Tamil Nadu, India
| | | | - K Thirumal Babu
- Heartline Clinic and Research Centre, Vellore, Tamil Nadu, India
| | - Anand Moses
- Institute of Diabetology, Madras Medical College & Rajiv Gandhi Government General Hospital, Chennai, Tamil Nadu, India
| | - Radha Saraswathy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| | - M Prakash Hande
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
7
|
Nurun Nabi A, Ebihara A. Diabetes and Renin-Angiotensin-Aldosterone System: Pathophysiology and Genetics. RENIN-ANGIOTENSIN ALDOSTERONE SYSTEM 2021. [DOI: 10.5772/intechopen.97518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Diabetes mellitus (DM) is a metabolic disorder and characterized by hyperglycemia. Being a concern of both the developed and developing world, diabetes is a global health burden and is a major cause of mortality world-wide. The most common is the type 2 diabetes mellitus (T2DM), which is mainly caused by resistance to insulin. Long-term complications of diabetes cause microvascular related problems (eg. nephropathy, neuropathy and retinopathy) along with macrovascular complications (eg. cardiovascular diseases, ischemic heart disease, peripheral vascular disease). Renin-angiotensin-aldosterone system (RAAS) regulates homeostasis of body fluid that in turn, maintains blood pressure. Thus, RAAS plays pivotal role in the pathogenesis of long-term DM complications like cardiovascular diseases and chronic kidney diseases. T2DM is a polygenic disease, and the roles of RAAS components in insulin signaling pathway and insulin resistance have been well documented. Hyperglycemia has been found to be associated with the increased plasma renin activity, arterial pressure and renal vascular resistance. Several studies have reported involvement of single variants within particular genes in initiation and development of T2D using different approaches. This chapter aims to investigate and discuss potential genetic polymorphisms underlying T2D identified through candidate gene studies, genetic linkage studies, genome wide association studies.
Collapse
|
8
|
Huda N, Yasmin T, Nabi AHMN. MNS16A VNTR polymorphism of human telomerase gene: Elucidation of a gender specific potential allele associated with type 2 diabetes in Bangladeshi population. J Diabetes Complications 2021; 35:108018. [PMID: 34404572 DOI: 10.1016/j.jdiacomp.2021.108018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/11/2021] [Accepted: 08/07/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Type 2 diabetes (T2D) is a multifactorial disorder that affects multi-organ and can alter telomerase (encoded by hTERT gene) activity and thus, may affect telomere length. The variable number of tandem repeats MNS16A in hTERT gene facilitates extension of telomeres by regulating telomerase. In the present study, genetic analysis of MNS16A tandem repeats in hTERT gene was performed with the aim of finding out any association of allelic and genotypic variations with the risk of T2D in Bangladeshi population. METHODS A total of unrelated 395 individuals with T2D and 247 healthy individuals were included in the study. The genotypic and allelic frequencies were determined using allele specific polymerase chain reaction. The association of allelic and genotypic frequencies with risk of T2D was analyzed using logistic regression analysis on the basis of odds ratio at 95% confidence interval. Hardy-Weinberg equilibrium (HWE) test was performed to evaluate the uniformity of the genotypic frequencies and deviation from the HWE was tested using Chi-square test. RESULTS Logistic regression analyses revealed significant association of short allele containing 243 bp (OR: 1.37 and p = 0.03) with T2D, when the long alleles (commonly found) were considered as reference. The heterozygous genotype 272/302 was significantly associated with the decreased risk of T2D (OR: 0.33, p = 0.001). The combined results of genotypes indicated that the MNS16A polymorphism was significantly associated with the increased risk of T2D under the dominant model (LL vs SL + SS; OR: 2.62, p < 0.0001). Interestingly, short allele 243 was associated with the risk of disease only in male population (OR: 1.62, p = 0.02). The genotype 272/302 was also found to be associated with the decreased risk of T2D when respective data for male was analyzed individually. CONCLUSIONS We have identified four variable number of tandem repeats with varying patterns of association with T2D in Bangladeshi population and to extend our knowledge of understanding regarding these VNTRs, further large-scale studies are warranted.
Collapse
Affiliation(s)
- Nafiul Huda
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Tahirah Yasmin
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - A H M Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh.
| |
Collapse
|
9
|
Saha SK, Saba AA, Hasib M, Rimon RA, Hasan I, Alam MS, Mahmud I, Nabi AN. Evaluation of D-loop hypervariable region I variations, haplogroups and copy number of mitochondrial DNA in Bangladeshi population with type 2 diabetes. Heliyon 2021; 7:e07573. [PMID: 34377852 PMCID: PMC8327661 DOI: 10.1016/j.heliyon.2021.e07573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 07/12/2021] [Indexed: 10/24/2022] Open
Abstract
The profound impact of mitochondrion in cellular metabolism has been well documented. Since type 2 diabetes (T2D) is a metabolic disorder, mitochondrial dysfunction is intricately linked with the disease pathogenesis. Mitochondrial DNA (mtDNA) variants are involved with functional dysfunction of mitochondrion and play a pivotal role in the susceptibility to T2D. In this study, we opted to find the association of mtDNA variants within the D-loop hypervariable region I (HVI), haplogroups and mtDNA copy number with T2D in Bangladeshi population. A total of 300 unrelated Bangladeshi individuals (150 healthy and 150 patients with T2D) were recruited in the present study, their HVI regions were amplified and sequenced using Sanger chemistry. Haplogrep2 and Phylotree17 tools were employed to determine the haplogroups. MtDNA copy number was measured using primers of mitochondrial tRNALeu (UUR) gene and nuclear β2-microglobulin gene. Variants G16048A (OR:0.12, p = 0.04) and G16129A (OR: 0.42, p = 0.007) were found to confer protective role against T2D according to logistic regression analysis. However along with G16129A, two new variants C16294T and T16325C demonstrated protective role against T2D when age and gender were adjusted. Haplogroups A and H showed significant association with the risk of T2D after adjustments out of total 19 major haplogroups identified. The mtDNA copy numbers were stratified into 4 groups according to the quartiles (groups with lower, medium, upper and higher mtDNA copy numbers were respectively designated as LCN, MCN, UCN and HCN). Patients with T2D had significantly lower mtDNA copy number compared to their healthy counterparts in HCN group. Moreover, six mtDNA variants were significantly associated with mtDNA copy number in the participants. Thus, our study confers that certain haplogroups and novel variants of mtDNA are significantly associated with T2D while decreased mtDNA copy number (though not significant) has been observed in patients with T2D. However, largescale studies are warranted to establish association of novel variants and haplogroup with type 2 diabetes.
Collapse
Affiliation(s)
- Sajoy Kanti Saha
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abdullah Al Saba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Hasib
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Razoan Al Rimon
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Imrul Hasan
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Sohrab Alam
- Department of Immunology, Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Shahbagh, Dhaka, Bangladesh
| | - Ishtiaq Mahmud
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - A.H.M. Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|