1
|
Hsieh ML, Nishizaki D, Adashek JJ, Kato S, Kurzrock R. Toll-like receptor 3: a double-edged sword. Biomark Res 2025; 13:32. [PMID: 39988665 PMCID: PMC11849352 DOI: 10.1186/s40364-025-00739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/02/2025] [Indexed: 02/25/2025] Open
Abstract
The discovery of Toll-like receptors (TLRs) and their role in dendritic cells earned the Nobel Prize for 2011 because TLRs profoundly enhanced our understanding of the immune system. Specifically, TLR3 is located within the endosomal compartments of dendritic cells and plays a crucial role in the immune response by acting as a pattern recognition receptor that detects both exogenous (viral) and endogenous (mammalian) double-stranded RNA. However, TLR3 activation is a double-edged sword in various immune-mediated diseases. On one hand, it can enhance anti-viral defenses and promote pathogen clearance, contributing to host protection. On the other hand, excessive or dysregulated TLR3 signaling can lead to chronic inflammation and tissue damage, exacerbating conditions such as autoimmune diseases, chronic viral infections, and cancer. In cancer, TLR3 expression has been linked to both favorable and poor prognoses, though the underlying mechanisms remain unclear. Recent clinical and preclinical advances have explored the use of TLR3 agonists in cancer immunotherapy, attempting to capitalize on their potential to enhance anti-tumor responses. The dual role of TLR3 highlights its complexity as a therapeutic target, necessitating careful modulation to maximize its protective effects while minimizing potential pathological consequences. In this review, we explore the intricate roles of TLR3 in immune responses across different disease contexts, including cancer, infections, autoimmune disorders, and allergies, highlighting both its protective and detrimental effects in these disorders, as well as progress in developing TLR3 agonists as part of the immunotherapy landscape.
Collapse
Affiliation(s)
| | - Daisuke Nishizaki
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Jacob J Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Shumei Kato
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin, Milwaukee, WI, USA.
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Zhang Y, He X, Yin D, Zhang Y. Redefinition of Synovial Fibroblasts in Rheumatoid Arthritis. Aging Dis 2024:AD.2024.0514. [PMID: 39122458 DOI: 10.14336/ad.2024.0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
The breakdown of immune tolerance and the rise in autoimmunity contribute to the onset of rheumatoid arthritis (RA), driven by significant changes in immune components. Recent advances in single-cell and spatial transcriptome profiling have revealed shifts in cell distribution and composition, expanding our understanding beyond molecular-level changes in inflammatory cytokines, autoantibodies, and autoantigens in RA. Surprisingly, synovial fibroblasts (SFs) play an active immunopathogenic role rather than remaining passive bystanders in RA, with notable alterations in their subpopulation distribution and composition. This study examines these changes in SF heterogeneity, assesses their impact on RA progression, and elucidates the immune characteristics and functions of SF subsets in the RA autoimmunity, encompassing both intrinsic and adaptive immunity. Additionally, this review discusses therapeutic strategies targeting immune SF subsets, highlighting the potential of future interventions in SF phenotypic reprogramming. Overall, this review redefines the role of SFs in RA and suggests targeting SF phenotypic reprogramming and its upstream molecules as a promising therapeutic approach to restore immune balance and modulate immune tolerance in RA.
Collapse
Affiliation(s)
- Yinci Zhang
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Xiong He
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Dongdong Yin
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Yihao Zhang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Ishibashi HK, Nakamura Y, Saruga T, Imaizumi T, Kurose A, Kawaguchi S, Seya K, Sasaki E, Ishibashi Y. TLR3 signaling-induced interferon-stimulated gene 56 plays a role in the pathogenesis of rheumatoid arthritis. Exp Biol Med (Maywood) 2024; 249:10122. [PMID: 38881847 PMCID: PMC11176439 DOI: 10.3389/ebm.2024.10122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Rheumatoid fibroblast-like synoviocytes (RFLS) have an important role in the inflammatory pathogenesis of rheumatoid arthritis (RA). Toll-like receptor 3 (TLR3) is upregulated in RFLS; its activation leads to the production of interferon-β (IFN-β), a type I IFN. IFN-stimulated gene 56 (ISG56) is induced by IFN and is involved in innate immune responses; however, its role in RA remains unknown. Therefore, the purpose of this study was to investigate the role of TLR3-induced ISG56 in human RFLS. RFLS were treated with polyinosinic-polycytidylic acid (poly I:C), which served as a TLR3 ligand. ISG56, melanoma differentiation-associated gene 5 (MDA5), and C-X-C motif chemokine ligand 10 (CXCL10) expression were measured using quantitative reverse transcription-polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. Using immunohistochemistry, we found that ISG56 was expressed in synovial tissues of patients with RA and osteoarthritis. Under poly I:C treatment, ISG56 was upregulated in RFLS. In addition, we found that the type I IFN-neutralizing antibody mixture suppressed ISG56 expression. ISG56 knockdown decreased CXCL10 expression and MDA5 knockdown decreased ISG56 expression. In addition, we found that ISG56 was strongly expressed in the synovial cells of patients with RA. TLR3 signaling induced ISG56 expression in RFLS and type I IFN was involved in ISG56 expression. ISG56 was also found to be associated with CXCL10 expression, suggesting that ISG56 may be involved in TLR3/type I IFN/CXCL10 axis, and play a role in RA synovial inflammation.
Collapse
Affiliation(s)
- Hikaru Kristi Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yuzuru Nakamura
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Tatsuro Saruga
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Akira Kurose
- Department of Anatomic Pathology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Shogo Kawaguchi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Eiji Sasaki
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
4
|
Ichimura Y, Konishi R, Shobo M, Tanaka R, Kubota N, Kayama H, Takeda K, Nomura T, Fujimoto M, Okiyama N. Autoimmunity against melanoma differentiation-associated gene 5 induces interstitial lung disease mimicking dermatomyositis in mice. Proc Natl Acad Sci U S A 2024; 121:e2313070121. [PMID: 38588434 PMCID: PMC11032490 DOI: 10.1073/pnas.2313070121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Anti-melanoma differentiation-associated gene 5 (MDA5) antibody-positive dermatomyositis (DM) is characterized by amyopathic DM with interstitial lung disease (ILD). Patients with anti-MDA5 antibody-associated ILD frequently develop rapidly progression and present high mortality rate in the acute phase. Here, we established a murine model of ILD mediated by autoimmunity against MDA5. Mice immunized with recombinant murine MDA5 whole protein, accompanied with complete Freund's adjuvant once a week for four times, developed MDA5-reactive T cells and anti-MDA5 antibodies. After acute lung injury induced by intranasal administration of polyinosinic-polycytidylic acid [poly (I:C)] mimicking viral infection, the MDA5-immunized mice developed fibrotic ILD representing prolonged respiratory inflammation accompanied by fibrotic changes 2 wk after poly (I:C)-administration, while the control mice had quickly and completely recovered from the respiratory inflammation. Treatment with anti-CD4 depleting antibody, but not anti-CD8 depleting antibody, suppressed the severity of MDA5-induced fibrotic ILD. Upregulation of interleukin (IL)-6 mRNA, which was temporarily observed in poly (I:C)-treated mice, was prolonged in MDA5-immunized mice. Treatment with anti-IL-6 receptor antibody ameliorated the MDA5-induced fibrotic ILD. These results suggested that autoimmunity against MDA5 exacerbates toll-like receptor 3-mediated acute lung injury, and prolongs inflammation resulting in the development of fibrotic ILD. IL-6 may play a key role initiating ILD in this model.
Collapse
Affiliation(s)
- Yuki Ichimura
- Department of Dermatology, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, Tokyo113-8519, Japan
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women’s Medical University, Tokyo162-8666, Japan
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Risa Konishi
- Department of Dermatology, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, Tokyo113-8519, Japan
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Miwako Shobo
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Ryota Tanaka
- Department of Dermatology, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, Tokyo113-8519, Japan
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Noriko Kubota
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Hisako Kayama
- Division of Bioscience, Institute for Advanced Co-Creation Studies, Osaka University, Osaka565-0871, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Toshifumi Nomura
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Naoko Okiyama
- Department of Dermatology, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, Tokyo113-8519, Japan
| |
Collapse
|
5
|
Nakamura Y, Ishibashi HK, Saruga T, Imaizumi T, Kurose A, Tachizaki M, Kawaguchi S, Seya K, Sasaki E, Ishibashi Y. Possible involvement of DExD/H box helicase 60 in synovial inflammation of rheumatoid arthritis: role of toll-like receptor 3 signaling. Mol Biol Rep 2024; 51:131. [PMID: 38236450 DOI: 10.1007/s11033-023-09063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Innate immunity is known to be implicated in the etiology of synovitis in rheumatoid arthritis (RA). However, details of the molecular mechanisms have not been fully clarified. DExD/H-box helicase 60 (DDX60), a putative RNA helicase, is of consequence in anti-viral innate immune reactions followed by inflammation. Although DDX60 is involved in the pathogenesis of autoimmune diseases such as systemic lupus nephritis, the role of DDX60 in RA has not been elucidated. The objective of this study was to examine the expression and the role of DDX60 in RA synovial inflammation. METHODS AND RESULTS DDX60 protein expression was investigated by immunohistochemistry in synovial tissues resected from 4 RA and 4 osteoarthritis (OA) patients. We found that synovial DDX60 expression was more intense in RA than in OA. Treatment of human rheumatoid fibroblast-like synoviocytes in culture with polyinosinic-polycytidylic acid, a Toll-like receptor 3 (TLR3) ligand, increased DDX60 protein and mRNA expression. A knockdown experiment of DDX60 using RNA interference revealed a decrease in the expression of poly IC-induced C-X-C motif chemokine ligand 10 (CXCL10) which induces lymphocyte chemotaxis. CONCLUSIONS The synovial DDX60 was more expressed in RA patients than in OA. In human RFLS, DDX60 stimulated by TLR3 signaling affected CXCL10 expression. DDX60 may contribute to synovial inflammation in RA.
Collapse
Affiliation(s)
- Yuzuru Nakamura
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan.
| | - Hikaru Kristi Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Tatsuro Saruga
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Akira Kurose
- Department of Anatomic Pathology, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Mayuki Tachizaki
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Shogo Kawaguchi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Eiji Sasaki
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| |
Collapse
|
6
|
Chwastek J, Kędziora M, Borczyk M, Korostyński M, Starowicz K. Inflammation-Driven Secretion Potential Is Upregulated in Osteoarthritic Fibroblast-Like Synoviocytes. Int J Mol Sci 2022; 23:ijms231911817. [PMID: 36233118 PMCID: PMC9570304 DOI: 10.3390/ijms231911817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common joint pathologies and a major cause of disability among the population of developed countries. It manifests as a gradual degeneration of the cartilage and subchondral part of the bone, leading to joint damage. Recent studies indicate that not only the cells that make up the articular cartilage but also the synoviocytes, which build the membrane surrounding the joint, contribute to the development of OA. Therefore, the aim of the study was to determine the response to inflammatory factors of osteoarthritic synoviocytes and to identify proteins secreted by them that may influence the progression of OA. This study demonstrated that fibroblast-like synoviocytes of OA patients (FLS-OA) respond more strongly to pro-inflammatory stimulation than cells obtained from control patients (FLS). These changes were observed at the transcriptome level and subsequently confirmed by protein analysis. FLS-OA stimulated by pro-inflammatory factors [such as lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) were shown to secrete significantly more chemokines (CXCL6, CXCL10, and CXCL16) and growth factors [angiopoietin-like protein 1 (ANGPTL1), fibroblast growth factor 5 (FGF5), and insulin-like growth factor 2 (IGF2)] than control cells. Moreover, the translation of proteolytic enzymes [matrix metalloprotease 3 (MMP3), cathepsin K (CTSK), and cathepsin S (CTSS)] by FLS-OA is increased under inflammatory conditions. Our data indicate that the FLS of OA patients are functionally altered, resulting in an enhanced response to the presence of pro-inflammatory factors in the environment, manifested by the increased production of the previously mentioned proteins, which may promote further disease progression.
Collapse
Affiliation(s)
- Jakub Chwastek
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Marta Kędziora
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Michał Korostyński
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
- Correspondence:
| |
Collapse
|
7
|
Gargano G, Oliva F, Oliviero A, Maffulli N. Small interfering RNAs in the management of human rheumatoid arthritis. Br Med Bull 2022; 142:34-43. [PMID: 35488320 PMCID: PMC9351475 DOI: 10.1093/bmb/ldac012] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) has unclear pathogenesis, but the molecules that feed its inflammatory state are known. Small interfering RNAs (siRNAs) are useful to identify molecular targets and evaluate the efficacy of specific drugs, and can themselves be used for therapeutic purposes. SOURCES OF DATA A systematic search of different databases to March 2022 was performed to define the role of siRNAs in RA therapy. Twenty suitable studies were identified. AREAS OF AGREEMENT Small interfering RNAs can be useful in the study of inflammatory processes in RA, and identify possible therapeutic targets and drug therapies. AREAS OF CONTROVERSY Many genes and cytokines participate in the inflammatory process of RA and can be regulated with siRNA. However, it is difficult to determine whether the responses to siRNAs and other drugs studied in human cells in vitro are similar to the responses in vivo. GROWING POINTS Inflammatory processes can be affected by the gene dysregulation of siRNAs on inflammatory cytokines. AREAS TIMELY FOR DEVELOPING RESEARCH To date, it is not possible to determine whether the pharmacological response of siRNAs on cells in vitro would be similar to what takes place in vivo for the diseases studied so far.
Collapse
Affiliation(s)
- Giuseppe Gargano
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno 84131, Italy.,Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, Baronissi SA 84081, Italy
| | - Francesco Oliva
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno 84131, Italy.,Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, Baronissi SA 84081, Italy
| | - Antonio Oliviero
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno 84131, Italy.,Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, Baronissi SA 84081, Italy
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno 84131, Italy.,Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, Baronissi SA 84081, Italy.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK.,School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent, ST4 7QB, UK
| |
Collapse
|