1
|
Moaeen-ud-Din M, Khan MS, Muner RD, Reecy JM. Potential SNPs and candidate genes influencing growth characteristics in Pakistani Beetal goat identified by GWAS analysis. THE JOURNAL OF BASIC AND APPLIED ZOOLOGY 2025; 86:18. [DOI: 10.1186/s41936-025-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/22/2025] [Indexed: 04/20/2025]
Abstract
Abstract
Background
A higher body weight at a younger age is an economically important trait for profitable goat farming. This study focussed on the identification of regions of the genome that harbour genetic variants associated with body weight using the Illumina GoatSNP50K Bead Chip. A total of 631 purebred Beetal goats (151 males and 480 females) were recorded for body weight, age and body measurement and then genotyped. Genome-wide association analysis was carried out with GEMMA.
Results
After application of quality control filters with Plink 1.9 i.e. call rate less than or equal to 0.9, minor allele frequency < 0.05 and HWE P value < 0.001, 594 animals and 45,744 SNPs were used to carry out the analyses for association. The association analysis for body weight with covariates of age, sex, morphometric measurements and contemporary group returned 10 significant SNPs (P = − log10e-4 to − log10e-6). Three associated SNPs were present within genes i.e. BTAF1 (snp1131-scaffold1029-1983670 on chromosome 26), NTM (snp53070-scaffold799-1,702,189 on chromosome 29) and GRID1 (snp3363-scaffold1102-797993 on chromosome 28) when blasted against ARS1(accession GCA_001704415.1). Moreover, some associated SNPs were localized close to genes i.e. CEP78 (snp44634-scaffold606-4621460 on chromosome 8), ROBO1 (snp11793-scaffold1437-557,127 on chromosome 1), ZFP36L2 (snp9758-scaffold135-2,388,277 on chromosome 11), SPTLC3 (snp25720-scaffold265-581,526 on chromosome 13), CTR9 (snp31951-scaffold358-554,703 on chromosome 15) and ZFHX3 (snp9581-scaffold1344-19,492 on chromosome 18) genes.
Conclusions
The study identified SNPs and genes with potential role in growth of goat which may be useful for generation of customized chip in the future.
Collapse
|
2
|
Hao P, Luo P, Xu S, Ren Z, Zhao H, Nan X. ZFP36L2 Is a Potential Prognostic Marker of IL1β + Osteosarcoma. Biomedicines 2024; 12:2861. [PMID: 39767767 PMCID: PMC11673156 DOI: 10.3390/biomedicines12122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Osteosarcoma stands as the predominant bone malignancy afflicting children and young adults. Despite strides in treatment, the enduring reality is that the long-term survival rates for patients grappling with recurrences and metastases linger at a mere 30%. This underscores the pressing demand for novel prognostic markers and therapeutic avenues to improve outcomes and offer hope to those battling this formidable disease. ZFP36L2, a member of the tristetraprolin family of CCCH zinc finger proteins, stands out for its pivotal role in posttranscriptional modifications and its ability to modify tumor microenvironments. Methods: We obtained RNA-seq data from TCGA and GTEx cohorts to investigate the expression of ZFP36L2 in tumor and normal tissues. We also utilized GO/KEGG analysis and immune infiltration analysis to verify the relationship between ZFP36L2 and immune cells. A Kaplan-Meier survival curve was used to study the relationship between ZFP36L2 and IL1β in osteosarcoma. Single-cell data analysis and cell-cell communication analysis were used to discover the therapeutic potential of ZFP36L2 in osteosarcoma. Results: This study elucidates the specific expression pattern of ZFP36L2 in tumors. ZFP36L2 is associated with metastasis in sarcoma, but has no statistically significant correlation with survival rate. ZFP36L2 has been shown to be associated with T cells and macrophages in the tumor microenvironment through GO/KEGG analysis and immune infiltration analysis. The survival analysis results show that ZFP36L2 can serve as a biomarker in IL1β+ osteosarcoma. Single-cell sequencing analysis shows that ZFP36L2 is present in IL1β+ macrophages. Cell-cell communication analysis indicates that ZFP36L2 targets TNF in IL1β+ osteosarcoma, thereby improving prognosis. Conclusions: ZFP36L2 has potential as a prognostic marker in IL1β+ osteosarcoma patients.
Collapse
Affiliation(s)
- Peiyao Hao
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei 230032, China; (P.H.); (P.L.); (Z.R.)
| | - Piaopiao Luo
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei 230032, China; (P.H.); (P.L.); (Z.R.)
| | - Shenglin Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;
| | - Zhenhua Ren
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei 230032, China; (P.H.); (P.L.); (Z.R.)
| | - Hong Zhao
- Department of Systems Medicine and Bioengineering, T. T. and W. F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA
| | - Xiang Nan
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei 230032, China; (P.H.); (P.L.); (Z.R.)
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;
| |
Collapse
|
3
|
Li K, Zhu Q, Du S, Zhao Q, Ba D, Zeng X, Peng Q, Cai J, Zhao Y, Jin H, Qi L. EGFLAM exhibits oncogenic activity and shows promise as a prognostic biomarker and therapeutic target in glioblastoma. Int Immunopharmacol 2024; 138:112625. [PMID: 38996666 DOI: 10.1016/j.intimp.2024.112625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Glioblastoma (GBM) remains the most lethal primary brain tumor, characterized by dismal survival rates. Novel molecular targets are urgently required to enhance therapeutic outcomes. A combination of bioinformatics analysis and experimental validation was employed to investigate the role of EGFLAM in GBM. The Chinese Glioma Genome Atlas provided a platform for gene expression profiling, while siRNA-mediated knockdown and overexpression assays in GBM cell lines, alongside in vivo tumorigenesis models, facilitated functional validation. EGFLAM was found to be significantly overexpressed in GBM tissues, correlating with adverse prognostic factors and higher tumor grades, particularly in patients over the age of 41. Functional assays indicated that EGFLAM is vital for maintaining GBM cell proliferation, viability, and invasiveness. Knockdown of EGFLAM expression led to a marked decrease in tumorigenic capabilities. Proteomic interactions involving EGFLAM, such as with NUP205, were implicated in cell cycle regulation, providing insight into its oncogenic mechanism. In vivo studies further demonstrated that silencing EGFLAM expression could inhibit tumor growth, underscoring its therapeutic potential. The study identifies EGFLAM as a pivotal oncogenic factor in GBM, serving as both a prognostic biomarker and a viable therapeutic target. These findings lay the groundwork for future research into EGFLAM-targeted therapies, aiming to improve clinical outcomes for GBM patients.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, PR China
| | - Qihui Zhu
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, PR China
| | - Siyuan Du
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, PR China
| | - Qiuman Zhao
- Department of Neurosurgery, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, PR China
| | - Deyan Ba
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, PR China
| | - Xiangzong Zeng
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, PR China
| | - Qian Peng
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, PR China
| | - Junbin Cai
- Department of Neurosurgery, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, PR China
| | - Yubo Zhao
- Department of Neurosurgery, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, PR China; Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, PR China
| | - Hong Jin
- School of Clinical Medicine, Jilin Medical University, NO.5, Jilin Road, Jilin 132013, Jilin Province, PR China
| | - Ling Qi
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, PR China.
| |
Collapse
|
4
|
Li W, Wang M, Ma W, Liu P, Zhang M, He J, Cui Y. Temozolomide protects against the progression of glioblastoma via SOX4 downregulation by inhibiting the LINC00470-mediated transcription factor EGR2. CNS Neurosci Ther 2023; 29:2292-2307. [PMID: 36987665 PMCID: PMC10352878 DOI: 10.1111/cns.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/17/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVE Temozolomide is extensively applied in chemotherapy for glioblastoma with unclear exact action mechanisms. This article seeks to address the potential molecular mechanisms in temozolomide therapy for glioblastoma involving LINC00470. METHODS Bioinformatics analysis was conducted to predict the potential mechanism of LINC00470 in glioblastoma, which was validated by dual-luciferase reporter, RIP, ChIP, and RNA pull-down assays. LINC00470 expression and the predicted downstream transcription factor early growth response 2 (EGR2) were detected in the collected brain tissues from glioblastoma patients. Following temozolomide treatment and/or gain- and loss-of-function approaches in glioblastoma cells, cell viability, invasion, migration, cycle distribution, angiogenesis, autophagy, and apoptosis were measured. In addition, the expression of mesenchymal surface marker proteins was assessed by western blot. Tumor xenograft in nude mice was conducted for in vivo validation. RESULTS Mechanistic analysis and bioinformatics analysis revealed that LINC00470 transcriptionally activated SRY-related high-mobility-group box 4 (SOX4) through the transcription factor EGR2. LINC00470 and EGR2 were highly expressed in brain tissues of glioblastoma patients. LINC00470 and EGR2 mRNA expression gradually decreased with increasing concentrations of temozolomide in glioblastoma cells, and SOX4 expression was reduced in cells by temozolomide and LINC00470 knockdown. Temozolomide treatment induced cell cycle arrest, diminished cell viability, migration, invasion, and angiogenesis, and increased apoptosis and autophagy in glioblastoma, which was counteracted by overexpressing LINC00470 or SOX4 but was further promoted by LINC00470 knockdown. Temozolomide restrained glioblastoma growth and angiogenesis in vivo, while LINC00470 or SOX4 overexpression nullified but LINC00470 knockdown further facilitated these trends. CONCLUSION Conclusively, temozolomide repressed glioblastoma progression by repressing the LINC00470/EGR2/SOX4 axis.
Collapse
Affiliation(s)
- Wenyang Li
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Ming Wang
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Wenjia Ma
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Ping Liu
- Department of OncologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Mingming Zhang
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jiarong He
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Yan Cui
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
5
|
Zhang Y, Tian F, Zhao J. MiR-520d-3p suppresses the proliferation and epithelial-mesenchymal transition of cervical cancer cells by targeting ZFP36L2. Heliyon 2023; 9:e18789. [PMID: 37600385 PMCID: PMC10432607 DOI: 10.1016/j.heliyon.2023.e18789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
MiR-520d-3p has recently been reported to have anti-tumor function in several cancers, including glioma and gastric cancer. However, the biological function and its mechanism of action remain unclear in cervical cancer (CC). In this study, we observed that miR-520d-3p expression was lowly expressed in CC specimens compared with adjacent normal specimens using reverse transcription quantitative PCR. Moreover, low miR-520d-3p expression was correlated with FIGO stage and lymph node metastasis by Chi-square test. Functionally, overexpression of miR-520d-3p suppressed the proliferation and migration and invasion of two CC cell lines (HeLa and SiHa) using CCK-8 assay and wound healing assay. After target prediction, luciferase reporter assay showed that zinc finger protein 36 ring finger protein-like 2 (ZFP36L2) was a direct target of miR-520d-3p in CC cells. The expression levels of ZFP36L2 at protein and mRNA were significantly increased in CC tissues compared with adjacent tissues. The expression of ZFP36L2 was negatively correlated with miR-520d-3p in the patients with CC. Importantly, ZFP36L2 overexpression abolished the effects of miR-520d-3p on cell proliferation, migration and EMT process in CC cells. In conclusion, our findings indicate that targeting miR-520d-3p/ZFP36L2 axis might be a promising therapeutic target for CC treatment.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Fei Tian
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jing Zhao
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Esemen Y, Awan M, Parwez R, Baig A, Rahman S, Masala I, Franchini S, Giakoumettis D. Molecular Pathogenesis of Glioblastoma in Adults and Future Perspectives: A Systematic Review. Int J Mol Sci 2022; 23:2607. [PMID: 35269752 PMCID: PMC8910150 DOI: 10.3390/ijms23052607] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM) is the most common and malignant tumour of the central nervous system. Recent appreciation of the heterogeneity amongst these tumours not only changed the WHO classification approach, but also created the need for developing novel and personalised therapies. This systematic review aims to highlight recent advancements in understanding the molecular pathogenesis of the GBM and discuss related novel treatment targets. A systematic search of the literature in the PubMed library was performed following the PRISMA guidelines for molecular pathogenesis and therapeutic advances. Original and meta-analyses studies from the last ten years were reviewed using pre-determined search terms. The results included articles relevant to GBM development focusing on the aberrancy in cell signaling pathways and intracellular events. Theragnostic targets and vaccination to treat GBM were also explored. The molecular pathophysiology of GBM is complex. Our systematic review suggests targeting therapy at the stemness, p53 mediated pathways and immune modulation. Exciting novel immune therapy involving dendritic cell vaccines, B-cell vaccines and viral vectors may be the future of treating GBM.
Collapse
Affiliation(s)
- Yagmur Esemen
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Mariam Awan
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Rabeeia Parwez
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Arsalan Baig
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Shahinur Rahman
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Ilaria Masala
- Department of Trauma and Orthopedics, The James Cook University Hospital, Middlesbrough TS4 3BW, UK;
| | - Sonia Franchini
- General Surgery Department, Queen’s Hospital, Romford, London RM7 0AG, UK;
| | - Dimitrios Giakoumettis
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| |
Collapse
|
7
|
Xiao Y, Yang K, Wang Z, Zhao M, Deng Y, Ji W, Zou Y, Qian C, Liu Y, Xiao H, Liu H. CD44-Mediated Poor Prognosis in Glioma Is Associated With M2-Polarization of Tumor-Associated Macrophages and Immunosuppression. Front Surg 2022; 8:775194. [PMID: 35187044 PMCID: PMC8850306 DOI: 10.3389/fsurg.2021.775194] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/29/2021] [Indexed: 12/31/2022] Open
Abstract
Background Glioma is the most common primary brain tumor with a poor prognosis. Key genes that are negatively related to prognosis may provide the therapy targets to cure glioma. To clarify the role of CD44 in glioma, we explored its function at bulk-transcriptome, spatial and single-cell transcriptome levels. Methods In total, expression profiles with survival data of whole-grade glioma from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), RNA-seq data with anatomic information of glioblastoma (GBM) from the Ivy Glioblastoma Atlas Project, RNA-sequencing (RNA-seq) data from recurrent GBM receiving adjuvant anti-PD-1 immunotherapy accessed through GSE121810, and single-cell RNA-seq data of GBM under accession GSE103224 were enrolled in this study. CD44-specific findings were further analyzed by R language. Results CD44 is positively correlated with WHO grade of malignancy and is negatively related to prognosis in glioma. Meanwhile, CD44 predominantly expresses in GBM mesenchymal subtype, and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses reveal that CD44 positively coexpressed genes are closely related to glioma immunity. Moreover, CD44+ cells mainly distribute in perinecrotic region with high expression of immune factors. At single-cell resolution, only malignant tumor cells, tumor-associated macrophages (TAMs), and T cells express CD44 in GBM. CD44+ malignant tumor cells are in mesenchymal-1-like (MES1-like) cellular state, and CD44+ TAMs are in M2 phenotype. CD44+ T cells have high expression of both PD-1 and PD-L1. CD44 and its directly interacted inhibitory immunomodulators are upregulated in patients with nonresponder recurrent GBM treated with PD-1 blockade therapy. Conclusion Our work demonstrates that CD44, a new M2 TAM biomarker, is involved in immune suppressor and promote glioma progression in glioma microenvironment. These results expand our understanding of CD44-specific clinical and immune features in glioma.
Collapse
Affiliation(s)
- Yong Xiao
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Kun Yang
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhen Wang
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Mengjie Zhao
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Wei Ji
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yuanjie Zou
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chunfa Qian
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yong Liu
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
- *Correspondence: Hong Xiao
| | - Hongyi Liu
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Hongyi Liu
| |
Collapse
|