1
|
Growth, Physiological, and Biochemical Responses of Ethiopian Red Pepper ( Capsicum annum L.) Cultivars to Drought Stress. ScientificWorldJournal 2023; 2023:4374318. [PMID: 36647396 PMCID: PMC9840558 DOI: 10.1155/2023/4374318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Red pepper (Capsicum annum L.) is an increasingly important economic crop in the world. Thus, this study aimed to investigate the growth, physiological, and biochemical responses of red pepper cultivars under drought stress conditions. A pot culture experiment was conducted in a completely randomized design with three replications, four treatments, and three cultivars. Totally, 36 pots and six seeds per pot were used to grow the seeds. After five weeks, the cultivars were exposed to different drought stress conditions (100% FC or control, 80% FC or low stress, 60% FC or moderate stress, and 40% FC or severe stress). All the collected data were subjected to an analysis of variance (ANOVA). Shoot length was reduced significantly (p < 0.05) in the Hagerew cultivar under severe drought stress. The photosynthesis rate was reduced by 21.11% (p < 0.05) in the Mitmita cultivar under severe drought stress. The highest percentage reduction of chlorophyll content (77.28%) was recorded in the Hagerew cultivar. Both Markofana and Mitmita responded to drought stress by increasing the accumulation of proline and phenolic compounds. The root-to-shoot ratio was increased significantly in both Markofana and Mitmita cultivars (27.91% and 50.92%), respectively, under drought-stress conditions. This study depicted that the cultivar Mitmita was the most drought-tolerant cultivar among the three cultivars.
Collapse
|
2
|
Gong X, Xu Y, Li H, Chen X, Song Z. Antioxidant activation, cell wall reinforcement, and reactive oxygen species regulation promote resistance to waterlogging stress in hot pepper (Capsicum annuum L.). BMC PLANT BIOLOGY 2022; 22:425. [PMID: 36050651 PMCID: PMC9434832 DOI: 10.1186/s12870-022-03807-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Hot pepper (Capsicum annuum L.) is one of the world's oldest domesticated crops. It has poor waterlogging tolerance, and flooding frequently results in plant death and yield reduction. Therefore, understanding the molecular mechanisms associated with pepper waterlogging tolerance is essential to grow new varieties with stronger tolerance. RESULTS In this study, we discovered that after 5 days of flooding, the growth rate of waterlogging-tolerant pepper cultivars did not reduce to a large extent. Physiological data revealed that chlorophyll concentration was not significantly affected by flooding; however, stomatal conductance was altered considerably 0-5 days after flooding, and the net photosynthesis rate changed substantially 5-10 days after flooding. In addition, the root activity of waterlogging-tolerant varieties was substantially higher after flooding for 10 days than that of the control. This implies that the effect of flooding is associated with changes in the root environment, which ultimately affects photosynthesis. We evaluated changes in gene expression levels between two pepper types at the same time point and the same pepper variety at different time points after flooding stress treatment and performed a screening for multiple potential genes. These differentially expressed genes (DEGs) were further analyzed for functional enrichment, and the results revealed that antioxidase genes, cell wall synthesis pathway genes, and calcium ion regulation pathway genes might be associated with waterlogging tolerance. Other genes identified in peppers with waterlogging tolerance included those associated with lignin synthesis regulation, reactive oxygen species (ROS) regulation pathways, and others associated with stress resistance. Considerable changes in the expression levels of these genes were recorded 5 days after waterlogging, which was consistent with a considerable increase in oxidase content that was also noted on the fifth day after flooding. The quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) findings revealed that among the 20 selected DEGs, including genes such as mitogen-activated protein kinase 3 (MPK3) and calcium-binding protein 4 (CML4), approximately 80% of the gene expression patterns were consistent with our RNA-seq dataset. CONCLUSIONS The findings of this study suggest that ROS modulation, increased antioxidase activity, lignin formation, and the expression of stress resistance genes help peppers with waterlogging tolerance resist flooding stress in the early stages. These findings provide a basis for further investigation of the molecular mechanisms responsible for waterlogging tolerance in pepper and may be a critical reference for the breeding of hot pepper.
Collapse
Affiliation(s)
- Xuefeng Gong
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture in Rural Affairs of the P.R. China, Chengdu, 610066, China
| | - Yi Xu
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture in Rural Affairs of the P.R. China, Chengdu, 610066, China
| | - Hong Li
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture in Rural Affairs of the P.R. China, Chengdu, 610066, China
| | - Xin Chen
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture in Rural Affairs of the P.R. China, Chengdu, 610066, China
| | - Zhanfeng Song
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China.
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture in Rural Affairs of the P.R. China, Chengdu, 610066, China.
| |
Collapse
|
3
|
Physiological Comparison of Wheat and Maize Seedlings Responses to Water Stresses. SUSTAINABILITY 2022. [DOI: 10.3390/su14137932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the study was to investigate specific responses of spring wheat (C3 photosynthesis) and maize (C4 photosynthesis) to drought and flooding stress. Analyses of water content, gas exchange intensity, photosynthetic apparatus activity, chlorophyll content, plant height and biological membrane integrity were performed on the 10th day of drought and flooding in both species at the third leaf stage. A specific response of wheat under both drought and flooding conditions involved an increase in ETo/RC ratio, describing electron transport flux converted into a single reaction center in PSII. Correlations between electrolyte leakage and the probability of electron transport beyond the plastoquinone QA, and the amount of energy used for the electron transport were also found. A specific response of maize during flooding was the increase of stomatal conductance. Additionally, a significant correlation between PN/Ci and relative water content was exhibited. Furthermore, the parameters differentiating the studied species only under stressful conditions were rendered. The application of such parameters can be widely used, e.g., for studying the reaction of a potential cultivars to drought and flooding. Providing such information to potential farmers can help better select cultivars for their environmental conditions.
Collapse
|