1
|
Lu Z, Wang Z, Zhang XA, Ning K. Myokines May Be the Answer to the Beneficial Immunomodulation of Tailored Exercise-A Narrative Review. Biomolecules 2024; 14:1205. [PMID: 39456138 PMCID: PMC11506288 DOI: 10.3390/biom14101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Exercise can regulate the immune function, activate the activity of immune cells, and promote the health of the organism, but the mechanism is not clear. Skeletal muscle is a secretory organ that secretes bioactive substances known as myokines. Exercise promotes skeletal muscle contraction and the expression of myokines including irisin, IL-6, BDNF, etc. Here, we review nine myokines that are regulated by exercise. These myokines have been shown to be associated with immune responses and to regulate the proliferation, differentiation, and maturation of immune cells and enhance their function, thereby serving to improve the health of the organism. The aim of this article is to review the effects of myokines on intrinsic and adaptive immunity and the important role that exercise plays in them. It provides a theoretical basis for exercise to promote health and provides a potential mechanism for the correlation between muscle factor expression and immunity, as well as the involvement of exercise in body immunity. It also provides the possibility to find a suitable exercise training program for immune system diseases.
Collapse
Affiliation(s)
| | | | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (Z.L.); (Z.W.)
| | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (Z.L.); (Z.W.)
| |
Collapse
|
2
|
Zhou N, Gong L, Zhang E, Wang X. Exploring exercise-driven exerkines: unraveling the regulation of metabolism and inflammation. PeerJ 2024; 12:e17267. [PMID: 38699186 PMCID: PMC11064867 DOI: 10.7717/peerj.17267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Exercise has many beneficial effects that provide health and metabolic benefits. Signaling molecules are released from organs and tissues in response to exercise stimuli and are widely termed exerkines, which exert influence on a multitude of intricate multi-tissue processes, such as muscle, adipose tissue, pancreas, liver, cardiovascular tissue, kidney, and bone. For the metabolic effect, exerkines regulate the metabolic homeostasis of organisms by increasing glucose uptake and improving fat synthesis. For the anti-inflammatory effect, exerkines positively influence various chronic inflammation-related diseases, such as type 2 diabetes and atherosclerosis. This review highlights the prospective contribution of exerkines in regulating metabolism, augmenting the anti-inflammatory effects, and providing additional advantages associated with exercise. Moreover, a comprehensive overview and analysis of recent advancements are provided in this review, in addition to predicting future applications used as a potential biomarker or therapeutic target to benefit patients with chronic diseases.
Collapse
Affiliation(s)
- Nihong Zhou
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- NanoLund Center for NanoScience, Lund University, Lund, Sweden
| | - Xintang Wang
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| |
Collapse
|
3
|
Is Brain-Derived Neurotrophic Factor a Metabolic Hormone in Peripheral Tissues? BIOLOGY 2022; 11:biology11071063. [PMID: 36101441 PMCID: PMC9312804 DOI: 10.3390/biology11071063] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 12/06/2022]
Abstract
Simple Summary The activity of brain-derived neurotrophic factor (BDF) in the central nervous system has been well-studied, but its physiological role in other organs has not been clearly defined. This review summarizes the current findings on the functionality of BDNF in various peripheral tissues and discusses several unresolved questions in the field. Abstract Brain-derived neurotrophic factor (BDNF) is an important growth factor in the central nervous system. In addition to its well-known activities in promoting neuronal survival, neuron differentiation, and synaptic plasticity, neuronal BDNF also regulates energy homeostasis by modulating the hypothalamus’s hormonal signals. In the past decades, several peripheral tissues, including liver, skeletal muscle, and white adipose tissue, were demonstrated as the active sources of BDNF synthesis in response to different metabolic challenges. Nevertheless, the functions of BDNF in these tissues remain obscure. With the use of tissue-specific Bdnf knockout animals and the availability of non-peptidyl BDNF mimetic, increasing evidence has reported that peripheral tissues-derived BDNF might play a significant role in maintaining systemic metabolism, possibly through the regulation of mitochondrial dynamics in the various tissues. This article reviews the autocrine/paracrine/endocrine functions of BDNF in non-neuronal tissues and discusses the unresolved questions about BDNF’s function.
Collapse
|
4
|
Partridge BR, Kani Y, Lorenzo MF, Campelo SN, Allen IC, Hinckley J, Hsu FC, Verbridge SS, Robertson JL, Davalos RV, Rossmeisl JH. High-Frequency Irreversible Electroporation (H-FIRE) Induced Blood-Brain Barrier Disruption Is Mediated by Cytoskeletal Remodeling and Changes in Tight Junction Protein Regulation. Biomedicines 2022; 10:1384. [PMID: 35740406 PMCID: PMC9220673 DOI: 10.3390/biomedicines10061384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma is the deadliest malignant brain tumor. Its location behind the blood-brain barrier (BBB) presents a therapeutic challenge by preventing effective delivery of most chemotherapeutics. H-FIRE is a novel tumor ablation method that transiently disrupts the BBB through currently unknown mechanisms. We hypothesized that H-FIRE mediated BBB disruption (BBBD) occurs via cytoskeletal remodeling and alterations in tight junction (TJ) protein regulation. Intracranial H-FIRE was delivered to Fischer rats prior to sacrifice at 1-, 24-, 48-, 72-, and 96 h post-treatment. Cytoskeletal proteins and native and ubiquitinated TJ proteins (TJP) were evaluated using immunoprecipitation, Western blotting, and gene-expression arrays on treated and sham control brain lysates. Cytoskeletal and TJ protein expression were further evaluated with immunofluorescent microscopy. A decrease in the F/G-actin ratio, decreased TJP concentrations, and increased ubiquitination of TJP were observed 1-48 h post-H-FIRE compared to sham controls. By 72-96 h, cytoskeletal and TJP expression recovered to pretreatment levels, temporally corresponding with increased claudin-5 and zonula occludens-1 gene expression. Ingenuity pathway analysis revealed significant dysregulation of claudin genes, centered around claudin-6 in H-FIRE treated rats. In conclusion, H-FIRE is capable of permeating the BBB in a spatiotemporal manner via cytoskeletal-mediated TJP modulation. This minimally invasive technology presents with applications for localized and long-lived enhanced intracranial drug delivery.
Collapse
Affiliation(s)
- Brittanie R. Partridge
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (B.R.P.); (Y.K.); (J.H.)
| | - Yukitaka Kani
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (B.R.P.); (Y.K.); (J.H.)
| | - Melvin F. Lorenzo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (M.F.L.); (S.N.C.)
| | - Sabrina N. Campelo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (M.F.L.); (S.N.C.)
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA; (I.C.A.); (S.S.V.); (J.L.R.); (R.V.D.)
- Center of Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jonathan Hinckley
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (B.R.P.); (Y.K.); (J.H.)
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Sciences, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA;
| | - Scott S. Verbridge
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA; (I.C.A.); (S.S.V.); (J.L.R.); (R.V.D.)
- Center of Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - John L. Robertson
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA; (I.C.A.); (S.S.V.); (J.L.R.); (R.V.D.)
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (M.F.L.); (S.N.C.)
- Center of Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - John H. Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (B.R.P.); (Y.K.); (J.H.)
- Center of Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|