1
|
Rezk AA, Mohamed HI, El-Beltagi HS. Genetic variability and diversity analysis in Oryza sativa L. genotypes using quantitative traits and SSR markers. Saudi J Biol Sci 2024; 31:103944. [PMID: 38327661 PMCID: PMC10848010 DOI: 10.1016/j.sjbs.2024.103944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
The present study was aimed at evaluating the genetic variation and population structure in a collection of 22 rice genotypes. Twenty-two rice genotypes were assessed using quantitative traits and SSR molecular markers for genetic variability and genetic diversity. As for genetic diversity, the genotypes were clarified based on twelve quantitative traits. Clustering produced two large groups: the IR70423-169-2-2 variety was in a branch alone due to its long duration, while, the second group included all rest of genotypes and was split up into two sub-groups. The first sub-group included IR67418-131-2-3-3-3, IR67420-206-3-1-3-3, Giza181, Giza182, Sakha104, and P1044-86-5-3-3-2M. However, pedigree played in divided clustering with Giza181 and Giza182, which were belonging to the Indica type and produced from the same parents. SSR markers produced 87 alleles, with a mean of 4.3 alleles per locus, which were detected in 22 rice genotypes. A higher number of alleles were found with primers RM262, RM244, RM3843, RM212, and RM3330. With an overall mean of 0.837, the polymorphic information content values were high for all SSR markers, ranging from a low of 0.397 for M254 to a high of 0.837 for RM244. The dendogram was divided into six groups according to the types of genotypes, with the pedigree playing a major role for the genetic distance. In order to help breeders choose parents and create suitable hybrids to achieve genetic improvement in crops, particularly rice, SSR is a useful technique for analysing genotype diversity and aiding in the genetic fingerprinting of each variety.
Collapse
Affiliation(s)
- Adel A. Rezk
- Agricultural Biotechnology Department, College of Agricultural and Food Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Heba I. Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agricultural and Food Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
2
|
Elkatry HO, El-Beltagi HS, Ahmed AR, Mohamed HI, Al-Otaibi HH, Ramadan KMA, Mahmoud MAA. The potential use of Indian rice flour or husk in fortification of pan bread: assessing bread's quality using sensory, physicochemical, and chemometric methods. Front Nutr 2023; 10:1240527. [PMID: 37781123 PMCID: PMC10540694 DOI: 10.3389/fnut.2023.1240527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Hassawi rice is an Indica variety cultivated in Saudi Arabia with a higher nutritional value than the commercial Basmati rice varieties. The present study has investigated the feasibility of combining Hassawi rice flour (HRF) or husk (HRHF), an abundant byproduct, with wheat flour to produce nutritious economical pan bread. To achieve this aim, the physicochemical properties of HRF and HRHF were assessed using techniques such as UPLC-tandem MS, ICP-OES, and colorimeter. The proximate composition (moisture, crude fiber, and ash) and mineral contents of HRHF are significantly (p < 0.05) higher than HRF. On the other hand, the compounds p-coumaric acid, vanillic acid, γ- and δ-tocotrienols, and γ-oryzanol were unique to HRF. We further determined the changes in sensory, technological, and physicochemical properties of wheat flour bread substituted with 5%, 10%, and 15% of HRF or HRHF. The rheological tests showed that the addition of HRF and HRHF increased dough development and stability time. Further, substituting wheat flour for HRF and HRHF at levels higher than 10% affected sensory attributes, such as color, taste, odor, flavor, and appearance. These changes, however, were not always at a significant level. The causes of the differences in properties between control and fortified bread samples were investigated by chemometric methods. Samples of bread + HRF at 5 and 10% had comparable overall profiles to the control. On the other hand, bread + HRHF samples proved to retain higher concentrations of bioactive molecules compared to the control bread. Our findings shed light on the possible use of rice husk fibers in baking goods, notably pan bread. Furthermore, by integrating rice husk fibers into baked goods, we may boost their health benefits while also contributing to the long-term use of agricultural waste.
Collapse
Affiliation(s)
- Haiam O. Elkatry
- Department of Food and Nutrition Science, College of Agricultural Science and Food, King Faisal University, Al Hofuf, Saudi Arabia
- Department of Home Economics, Faculty of Specific Education, Ain Shams University, Cairo, Egypt
| | - Hossam S. El-Beltagi
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Abdelrahman R. Ahmed
- Department of Food and Nutrition Science, College of Agricultural Science and Food, King Faisal University, Al Hofuf, Saudi Arabia
- Department of Home Economics, Faculty of Specific Education, Ain Shams University, Cairo, Egypt
| | - Heba I. Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Hala Hazam Al-Otaibi
- Department of Food and Nutrition Science, College of Agricultural Science and Food, King Faisal University, Al Hofuf, Saudi Arabia
| | - Khaled M. A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al Hofuf, Saudi Arabia
- Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohamed A. A. Mahmoud
- Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|